3.2.5.2 Prozesskontrollblock unter Linux

[gesichtete Version][gesichtete Version]
Zeile 16: Zeile 16:
</p>
</p>


==== sched.h ====
== sched.h ==
<br />
<br />
<p>
<p>
<loop_listing title="Quelltext der Datei sched.h aus dem Linux-Kernel" description="Der Prozesskontrollblock ist deklariert zwischen Zeile 1043 und 1459.">
<loop_listing title="Quelltext der Datei sched.h aus dem Linux-Kernel" description="Der Prozesskontrollblock ist deklariert zwischen Zeile 1043 und 1459.">
<source lang="c++" line="true">
<source lang="c" line="true">
#ifndef _LINUX_SCHED_H
#ifndef _LINUX_SCHED_H
#define _LINUX_SCHED_H
#define _LINUX_SCHED_H

Version vom 18. Oktober 2014, 09:43 Uhr

Prozesskontrollblock unter Linux


Beispiel: Prozesskontrollblock unter Linux

Hinweis

Weiterführende Literatur

Achilles 2006 zeigt in Kapitel 3.1 den Linux Process Control Block. Die Lektüre dieser Quelle sei ausdrücklich empfohlen.

Studierende sind oftmals berechtigt, eine PDF-Version dieses Buches ohne entstehende Kosten über ihre Hochschulen von Springerlink zu beziehen.

sched.h


   1 #ifndef _LINUX_SCHED_H
   2 #define _LINUX_SCHED_H
   3 
   4 #include <uapi/linux/sched.h>
   5 
   6 
   7 struct sched_param {
   8 	int sched_priority;
   9 };
  10 
  11 #include <asm/param.h>	/* for HZ */
  12 
  13 #include <linux/capability.h>
  14 #include <linux/threads.h>
  15 #include <linux/kernel.h>
  16 #include <linux/types.h>
  17 #include <linux/timex.h>
  18 #include <linux/jiffies.h>
  19 #include <linux/rbtree.h>
  20 #include <linux/thread_info.h>
  21 #include <linux/cpumask.h>
  22 #include <linux/errno.h>
  23 #include <linux/nodemask.h>
  24 #include <linux/mm_types.h>
  25 #include <linux/preempt_mask.h>
  26 
  27 #include <asm/page.h>
  28 #include <asm/ptrace.h>
  29 #include <asm/cputime.h>
  30 
  31 #include <linux/smp.h>
  32 #include <linux/sem.h>
  33 #include <linux/signal.h>
  34 #include <linux/compiler.h>
  35 #include <linux/completion.h>
  36 #include <linux/pid.h>
  37 #include <linux/percpu.h>
  38 #include <linux/topology.h>
  39 #include <linux/proportions.h>
  40 #include <linux/seccomp.h>
  41 #include <linux/rcupdate.h>
  42 #include <linux/rculist.h>
  43 #include <linux/rtmutex.h>
  44 
  45 #include <linux/time.h>
  46 #include <linux/param.h>
  47 #include <linux/resource.h>
  48 #include <linux/timer.h>
  49 #include <linux/hrtimer.h>
  50 #include <linux/task_io_accounting.h>
  51 #include <linux/latencytop.h>
  52 #include <linux/cred.h>
  53 #include <linux/llist.h>
  54 #include <linux/uidgid.h>
  55 #include <linux/gfp.h>
  56 
  57 #include <asm/processor.h>
  58 
  59 struct exec_domain;
  60 struct futex_pi_state;
  61 struct robust_list_head;
  62 struct bio_list;
  63 struct fs_struct;
  64 struct perf_event_context;
  65 struct blk_plug;
  66 
  67 /*
  68  * List of flags we want to share for kernel threads,
  69  * if only because they are not used by them anyway.
  70  */
  71 #define CLONE_KERNEL	(CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
  72 
  73 /*
  74  * These are the constant used to fake the fixed-point load-average
  75  * counting. Some notes:
  76  *  - 11 bit fractions expand to 22 bits by the multiplies: this gives
  77  *    a load-average precision of 10 bits integer + 11 bits fractional
  78  *  - if you want to count load-averages more often, you need more
  79  *    precision, or rounding will get you. With 2-second counting freq,
  80  *    the EXP_n values would be 1981, 2034 and 2043 if still using only
  81  *    11 bit fractions.
  82  */
  83 extern unsigned long avenrun[];		/* Load averages */
  84 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
  85 
  86 #define FSHIFT		11		/* nr of bits of precision */
  87 #define FIXED_1		(1<<FSHIFT)	/* 1.0 as fixed-point */
  88 #define LOAD_FREQ	(5*HZ+1)	/* 5 sec intervals */
  89 #define EXP_1		1884		/* 1/exp(5sec/1min) as fixed-point */
  90 #define EXP_5		2014		/* 1/exp(5sec/5min) */
  91 #define EXP_15		2037		/* 1/exp(5sec/15min) */
  92 
  93 #define CALC_LOAD(load,exp,n) \
  94 	load *= exp; \
  95 	load += n*(FIXED_1-exp); \
  96 	load >>= FSHIFT;
  97 
  98 extern unsigned long total_forks;
  99 extern int nr_threads;
 100 DECLARE_PER_CPU(unsigned long, process_counts);
 101 extern int nr_processes(void);
 102 extern unsigned long nr_running(void);
 103 extern unsigned long nr_iowait(void);
 104 extern unsigned long nr_iowait_cpu(int cpu);
 105 extern unsigned long this_cpu_load(void);
 106 
 107 
 108 extern void calc_global_load(unsigned long ticks);
 109 extern void update_cpu_load_nohz(void);
 110 
 111 extern unsigned long get_parent_ip(unsigned long addr);
 112 
 113 extern void dump_cpu_task(int cpu);
 114 
 115 struct seq_file;
 116 struct cfs_rq;
 117 struct task_group;
 118 #ifdef CONFIG_SCHED_DEBUG
 119 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
 120 extern void proc_sched_set_task(struct task_struct *p);
 121 extern void
 122 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
 123 #endif
 124 
 125 /*
 126  * Task state bitmask. NOTE! These bits are also
 127  * encoded in fs/proc/array.c: get_task_state().
 128  *
 129  * We have two separate sets of flags: task->state
 130  * is about runnability, while task->exit_state are
 131  * about the task exiting. Confusing, but this way
 132  * modifying one set can't modify the other one by
 133  * mistake.
 134  */
 135 #define TASK_RUNNING		0
 136 #define TASK_INTERRUPTIBLE	1
 137 #define TASK_UNINTERRUPTIBLE	2
 138 #define __TASK_STOPPED		4
 139 #define __TASK_TRACED		8
 140 /* in tsk->exit_state */
 141 #define EXIT_ZOMBIE		16
 142 #define EXIT_DEAD		32
 143 /* in tsk->state again */
 144 #define TASK_DEAD		64
 145 #define TASK_WAKEKILL		128
 146 #define TASK_WAKING		256
 147 #define TASK_PARKED		512
 148 #define TASK_STATE_MAX		1024
 149 
 150 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP"
 151 
 152 extern char ___assert_task_state[1 - 2*!!(
 153 		sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
 154 
 155 /* Convenience macros for the sake of set_task_state */
 156 #define TASK_KILLABLE		(TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
 157 #define TASK_STOPPED		(TASK_WAKEKILL | __TASK_STOPPED)
 158 #define TASK_TRACED		(TASK_WAKEKILL | __TASK_TRACED)
 159 
 160 /* Convenience macros for the sake of wake_up */
 161 #define TASK_NORMAL		(TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
 162 #define TASK_ALL		(TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
 163 
 164 /* get_task_state() */
 165 #define TASK_REPORT		(TASK_RUNNING | TASK_INTERRUPTIBLE | \
 166 				 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
 167 				 __TASK_TRACED)
 168 
 169 #define task_is_traced(task)	((task->state & __TASK_TRACED) != 0)
 170 #define task_is_stopped(task)	((task->state & __TASK_STOPPED) != 0)
 171 #define task_is_dead(task)	((task)->exit_state != 0)
 172 #define task_is_stopped_or_traced(task)	\
 173 			((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
 174 #define task_contributes_to_load(task)	\
 175 				((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
 176 				 (task->flags & PF_FROZEN) == 0)
 177 
 178 #define __set_task_state(tsk, state_value)		\
 179 	do { (tsk)->state = (state_value); } while (0)
 180 #define set_task_state(tsk, state_value)		\
 181 	set_mb((tsk)->state, (state_value))
 182 
 183 /*
 184  * set_current_state() includes a barrier so that the write of current->state
 185  * is correctly serialised wrt the caller's subsequent test of whether to
 186  * actually sleep:
 187  *
 188  *	set_current_state(TASK_UNINTERRUPTIBLE);
 189  *	if (do_i_need_to_sleep())
 190  *		schedule();
 191  *
 192  * If the caller does not need such serialisation then use __set_current_state()
 193  */
 194 #define __set_current_state(state_value)			\
 195 	do { current->state = (state_value); } while (0)
 196 #define set_current_state(state_value)		\
 197 	set_mb(current->state, (state_value))
 198 
 199 /* Task command name length */
 200 #define TASK_COMM_LEN 16
 201 
 202 #include <linux/spinlock.h>
 203 
 204 /*
 205  * This serializes "schedule()" and also protects
 206  * the run-queue from deletions/modifications (but
 207  * _adding_ to the beginning of the run-queue has
 208  * a separate lock).
 209  */
 210 extern rwlock_t tasklist_lock;
 211 extern spinlock_t mmlist_lock;
 212 
 213 struct task_struct;
 214 
 215 #ifdef CONFIG_PROVE_RCU
 216 extern int lockdep_tasklist_lock_is_held(void);
 217 #endif /* #ifdef CONFIG_PROVE_RCU */
 218 
 219 extern void sched_init(void);
 220 extern void sched_init_smp(void);
 221 extern asmlinkage void schedule_tail(struct task_struct *prev);
 222 extern void init_idle(struct task_struct *idle, int cpu);
 223 extern void init_idle_bootup_task(struct task_struct *idle);
 224 
 225 extern int runqueue_is_locked(int cpu);
 226 
 227 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
 228 extern void nohz_balance_enter_idle(int cpu);
 229 extern void set_cpu_sd_state_idle(void);
 230 extern int get_nohz_timer_target(void);
 231 #else
 232 static inline void nohz_balance_enter_idle(int cpu) { }
 233 static inline void set_cpu_sd_state_idle(void) { }
 234 #endif
 235 
 236 /*
 237  * Only dump TASK_* tasks. (0 for all tasks)
 238  */
 239 extern void show_state_filter(unsigned long state_filter);
 240 
 241 static inline void show_state(void)
 242 {
 243 	show_state_filter(0);
 244 }
 245 
 246 extern void show_regs(struct pt_regs *);
 247 
 248 /*
 249  * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
 250  * task), SP is the stack pointer of the first frame that should be shown in the back
 251  * trace (or NULL if the entire call-chain of the task should be shown).
 252  */
 253 extern void show_stack(struct task_struct *task, unsigned long *sp);
 254 
 255 void io_schedule(void);
 256 long io_schedule_timeout(long timeout);
 257 
 258 extern void cpu_init (void);
 259 extern void trap_init(void);
 260 extern void update_process_times(int user);
 261 extern void scheduler_tick(void);
 262 
 263 extern void sched_show_task(struct task_struct *p);
 264 
 265 #ifdef CONFIG_LOCKUP_DETECTOR
 266 extern void touch_softlockup_watchdog(void);
 267 extern void touch_softlockup_watchdog_sync(void);
 268 extern void touch_all_softlockup_watchdogs(void);
 269 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
 270 				  void __user *buffer,
 271 				  size_t *lenp, loff_t *ppos);
 272 extern unsigned int  softlockup_panic;
 273 void lockup_detector_init(void);
 274 #else
 275 static inline void touch_softlockup_watchdog(void)
 276 {
 277 }
 278 static inline void touch_softlockup_watchdog_sync(void)
 279 {
 280 }
 281 static inline void touch_all_softlockup_watchdogs(void)
 282 {
 283 }
 284 static inline void lockup_detector_init(void)
 285 {
 286 }
 287 #endif
 288 
 289 #ifdef CONFIG_DETECT_HUNG_TASK
 290 void reset_hung_task_detector(void);
 291 #else
 292 static inline void reset_hung_task_detector(void)
 293 {
 294 }
 295 #endif
 296 
 297 /* Attach to any functions which should be ignored in wchan output. */
 298 #define __sched		__attribute__((__section__(".sched.text")))
 299 
 300 /* Linker adds these: start and end of __sched functions */
 301 extern char __sched_text_start[], __sched_text_end[];
 302 
 303 /* Is this address in the __sched functions? */
 304 extern int in_sched_functions(unsigned long addr);
 305 
 306 #define	MAX_SCHEDULE_TIMEOUT	LONG_MAX
 307 extern signed long schedule_timeout(signed long timeout);
 308 extern signed long schedule_timeout_interruptible(signed long timeout);
 309 extern signed long schedule_timeout_killable(signed long timeout);
 310 extern signed long schedule_timeout_uninterruptible(signed long timeout);
 311 asmlinkage void schedule(void);
 312 extern void schedule_preempt_disabled(void);
 313 
 314 struct nsproxy;
 315 struct user_namespace;
 316 
 317 #ifdef CONFIG_MMU
 318 extern void arch_pick_mmap_layout(struct mm_struct *mm);
 319 extern unsigned long
 320 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
 321 		       unsigned long, unsigned long);
 322 extern unsigned long
 323 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
 324 			  unsigned long len, unsigned long pgoff,
 325 			  unsigned long flags);
 326 #else
 327 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
 328 #endif
 329 
 330 
 331 extern void set_dumpable(struct mm_struct *mm, int value);
 332 extern int get_dumpable(struct mm_struct *mm);
 333 
 334 #define SUID_DUMP_DISABLE	0	/* No setuid dumping */
 335 #define SUID_DUMP_USER		1	/* Dump as user of process */
 336 #define SUID_DUMP_ROOT		2	/* Dump as root */
 337 
 338 /* mm flags */
 339 /* dumpable bits */
 340 #define MMF_DUMPABLE      0  /* core dump is permitted */
 341 #define MMF_DUMP_SECURELY 1  /* core file is readable only by root */
 342 
 343 #define MMF_DUMPABLE_BITS 2
 344 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
 345 
 346 /* coredump filter bits */
 347 #define MMF_DUMP_ANON_PRIVATE	2
 348 #define MMF_DUMP_ANON_SHARED	3
 349 #define MMF_DUMP_MAPPED_PRIVATE	4
 350 #define MMF_DUMP_MAPPED_SHARED	5
 351 #define MMF_DUMP_ELF_HEADERS	6
 352 #define MMF_DUMP_HUGETLB_PRIVATE 7
 353 #define MMF_DUMP_HUGETLB_SHARED  8
 354 
 355 #define MMF_DUMP_FILTER_SHIFT	MMF_DUMPABLE_BITS
 356 #define MMF_DUMP_FILTER_BITS	7
 357 #define MMF_DUMP_FILTER_MASK \
 358 	(((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
 359 #define MMF_DUMP_FILTER_DEFAULT \
 360 	((1 << MMF_DUMP_ANON_PRIVATE) |	(1 << MMF_DUMP_ANON_SHARED) |\
 361 	 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
 362 
 363 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
 364 # define MMF_DUMP_MASK_DEFAULT_ELF	(1 << MMF_DUMP_ELF_HEADERS)
 365 #else
 366 # define MMF_DUMP_MASK_DEFAULT_ELF	0
 367 #endif
 368 					/* leave room for more dump flags */
 369 #define MMF_VM_MERGEABLE	16	/* KSM may merge identical pages */
 370 #define MMF_VM_HUGEPAGE		17	/* set when VM_HUGEPAGE is set on vma */
 371 #define MMF_EXE_FILE_CHANGED	18	/* see prctl_set_mm_exe_file() */
 372 
 373 #define MMF_HAS_UPROBES		19	/* has uprobes */
 374 #define MMF_RECALC_UPROBES	20	/* MMF_HAS_UPROBES can be wrong */
 375 
 376 #define MMF_INIT_MASK		(MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
 377 
 378 struct sighand_struct {
 379 	atomic_t		count;
 380 	struct k_sigaction	action[_NSIG];
 381 	spinlock_t		siglock;
 382 	wait_queue_head_t	signalfd_wqh;
 383 };
 384 
 385 struct pacct_struct {
 386 	int			ac_flag;
 387 	long			ac_exitcode;
 388 	unsigned long		ac_mem;
 389 	cputime_t		ac_utime, ac_stime;
 390 	unsigned long		ac_minflt, ac_majflt;
 391 };
 392 
 393 struct cpu_itimer {
 394 	cputime_t expires;
 395 	cputime_t incr;
 396 	u32 error;
 397 	u32 incr_error;
 398 };
 399 
 400 /**
 401  * struct cputime - snaphsot of system and user cputime
 402  * @utime: time spent in user mode
 403  * @stime: time spent in system mode
 404  *
 405  * Gathers a generic snapshot of user and system time.
 406  */
 407 struct cputime {
 408 	cputime_t utime;
 409 	cputime_t stime;
 410 };
 411 
 412 /**
 413  * struct task_cputime - collected CPU time counts
 414  * @utime:		time spent in user mode, in &cputime_t units
 415  * @stime:		time spent in kernel mode, in &cputime_t units
 416  * @sum_exec_runtime:	total time spent on the CPU, in nanoseconds
 417  *
 418  * This is an extension of struct cputime that includes the total runtime
 419  * spent by the task from the scheduler point of view.
 420  *
 421  * As a result, this structure groups together three kinds of CPU time
 422  * that are tracked for threads and thread groups.  Most things considering
 423  * CPU time want to group these counts together and treat all three
 424  * of them in parallel.
 425  */
 426 struct task_cputime {
 427 	cputime_t utime;
 428 	cputime_t stime;
 429 	unsigned long long sum_exec_runtime;
 430 };
 431 /* Alternate field names when used to cache expirations. */
 432 #define prof_exp	stime
 433 #define virt_exp	utime
 434 #define sched_exp	sum_exec_runtime
 435 
 436 #define INIT_CPUTIME	\
 437 	(struct task_cputime) {					\
 438 		.utime = 0,					\
 439 		.stime = 0,					\
 440 		.sum_exec_runtime = 0,				\
 441 	}
 442 
 443 #ifdef CONFIG_PREEMPT_COUNT
 444 #define PREEMPT_DISABLED	(1 + PREEMPT_ENABLED)
 445 #else
 446 #define PREEMPT_DISABLED	PREEMPT_ENABLED
 447 #endif
 448 
 449 /*
 450  * Disable preemption until the scheduler is running.
 451  * Reset by start_kernel()->sched_init()->init_idle().
 452  *
 453  * We include PREEMPT_ACTIVE to avoid cond_resched() from working
 454  * before the scheduler is active -- see should_resched().
 455  */
 456 #define INIT_PREEMPT_COUNT	(PREEMPT_DISABLED + PREEMPT_ACTIVE)
 457 
 458 /**
 459  * struct thread_group_cputimer - thread group interval timer counts
 460  * @cputime:		thread group interval timers.
 461  * @running:		non-zero when there are timers running and
 462  * 			@cputime receives updates.
 463  * @lock:		lock for fields in this struct.
 464  *
 465  * This structure contains the version of task_cputime, above, that is
 466  * used for thread group CPU timer calculations.
 467  */
 468 struct thread_group_cputimer {
 469 	struct task_cputime cputime;
 470 	int running;
 471 	raw_spinlock_t lock;
 472 };
 473 
 474 #include <linux/rwsem.h>
 475 struct autogroup;
 476 
 477 /*
 478  * NOTE! "signal_struct" does not have its own
 479  * locking, because a shared signal_struct always
 480  * implies a shared sighand_struct, so locking
 481  * sighand_struct is always a proper superset of
 482  * the locking of signal_struct.
 483  */
 484 struct signal_struct {
 485 	atomic_t		sigcnt;
 486 	atomic_t		live;
 487 	int			nr_threads;
 488 	struct list_head	thread_head;
 489 
 490 	wait_queue_head_t	wait_chldexit;	/* for wait4() */
 491 
 492 	/* current thread group signal load-balancing target: */
 493 	struct task_struct	*curr_target;
 494 
 495 	/* shared signal handling: */
 496 	struct sigpending	shared_pending;
 497 
 498 	/* thread group exit support */
 499 	int			group_exit_code;
 500 	/* overloaded:
 501 	 * - notify group_exit_task when ->count is equal to notify_count
 502 	 * - everyone except group_exit_task is stopped during signal delivery
 503 	 *   of fatal signals, group_exit_task processes the signal.
 504 	 */
 505 	int			notify_count;
 506 	struct task_struct	*group_exit_task;
 507 
 508 	/* thread group stop support, overloads group_exit_code too */
 509 	int			group_stop_count;
 510 	unsigned int		flags; /* see SIGNAL_* flags below */
 511 
 512 	/*
 513 	 * PR_SET_CHILD_SUBREAPER marks a process, like a service
 514 	 * manager, to re-parent orphan (double-forking) child processes
 515 	 * to this process instead of 'init'. The service manager is
 516 	 * able to receive SIGCHLD signals and is able to investigate
 517 	 * the process until it calls wait(). All children of this
 518 	 * process will inherit a flag if they should look for a
 519 	 * child_subreaper process at exit.
 520 	 */
 521 	unsigned int		is_child_subreaper:1;
 522 	unsigned int		has_child_subreaper:1;
 523 
 524 	/* POSIX.1b Interval Timers */
 525 	int			posix_timer_id;
 526 	struct list_head	posix_timers;
 527 
 528 	/* ITIMER_REAL timer for the process */
 529 	struct hrtimer real_timer;
 530 	struct pid *leader_pid;
 531 	ktime_t it_real_incr;
 532 
 533 	/*
 534 	 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
 535 	 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
 536 	 * values are defined to 0 and 1 respectively
 537 	 */
 538 	struct cpu_itimer it[2];
 539 
 540 	/*
 541 	 * Thread group totals for process CPU timers.
 542 	 * See thread_group_cputimer(), et al, for details.
 543 	 */
 544 	struct thread_group_cputimer cputimer;
 545 
 546 	/* Earliest-expiration cache. */
 547 	struct task_cputime cputime_expires;
 548 
 549 	struct list_head cpu_timers[3];
 550 
 551 	struct pid *tty_old_pgrp;
 552 
 553 	/* boolean value for session group leader */
 554 	int leader;
 555 
 556 	struct tty_struct *tty; /* NULL if no tty */
 557 
 558 #ifdef CONFIG_SCHED_AUTOGROUP
 559 	struct autogroup *autogroup;
 560 #endif
 561 	/*
 562 	 * Cumulative resource counters for dead threads in the group,
 563 	 * and for reaped dead child processes forked by this group.
 564 	 * Live threads maintain their own counters and add to these
 565 	 * in __exit_signal, except for the group leader.
 566 	 */
 567 	cputime_t utime, stime, cutime, cstime;
 568 	cputime_t gtime;
 569 	cputime_t cgtime;
 570 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
 571 	struct cputime prev_cputime;
 572 #endif
 573 	unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
 574 	unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
 575 	unsigned long inblock, oublock, cinblock, coublock;
 576 	unsigned long maxrss, cmaxrss;
 577 	struct task_io_accounting ioac;
 578 
 579 	/*
 580 	 * Cumulative ns of schedule CPU time fo dead threads in the
 581 	 * group, not including a zombie group leader, (This only differs
 582 	 * from jiffies_to_ns(utime + stime) if sched_clock uses something
 583 	 * other than jiffies.)
 584 	 */
 585 	unsigned long long sum_sched_runtime;
 586 
 587 	/*
 588 	 * We don't bother to synchronize most readers of this at all,
 589 	 * because there is no reader checking a limit that actually needs
 590 	 * to get both rlim_cur and rlim_max atomically, and either one
 591 	 * alone is a single word that can safely be read normally.
 592 	 * getrlimit/setrlimit use task_lock(current->group_leader) to
 593 	 * protect this instead of the siglock, because they really
 594 	 * have no need to disable irqs.
 595 	 */
 596 	struct rlimit rlim[RLIM_NLIMITS];
 597 
 598 #ifdef CONFIG_BSD_PROCESS_ACCT
 599 	struct pacct_struct pacct;	/* per-process accounting information */
 600 #endif
 601 #ifdef CONFIG_TASKSTATS
 602 	struct taskstats *stats;
 603 #endif
 604 #ifdef CONFIG_AUDIT
 605 	unsigned audit_tty;
 606 	unsigned audit_tty_log_passwd;
 607 	struct tty_audit_buf *tty_audit_buf;
 608 #endif
 609 #ifdef CONFIG_CGROUPS
 610 	/*
 611 	 * group_rwsem prevents new tasks from entering the threadgroup and
 612 	 * member tasks from exiting,a more specifically, setting of
 613 	 * PF_EXITING.  fork and exit paths are protected with this rwsem
 614 	 * using threadgroup_change_begin/end().  Users which require
 615 	 * threadgroup to remain stable should use threadgroup_[un]lock()
 616 	 * which also takes care of exec path.  Currently, cgroup is the
 617 	 * only user.
 618 	 */
 619 	struct rw_semaphore group_rwsem;
 620 #endif
 621 
 622 	oom_flags_t oom_flags;
 623 	short oom_score_adj;		/* OOM kill score adjustment */
 624 	short oom_score_adj_min;	/* OOM kill score adjustment min value.
 625 					 * Only settable by CAP_SYS_RESOURCE. */
 626 
 627 	struct mutex cred_guard_mutex;	/* guard against foreign influences on
 628 					 * credential calculations
 629 					 * (notably. ptrace) */
 630 };
 631 
 632 /*
 633  * Bits in flags field of signal_struct.
 634  */
 635 #define SIGNAL_STOP_STOPPED	0x00000001 /* job control stop in effect */
 636 #define SIGNAL_STOP_CONTINUED	0x00000002 /* SIGCONT since WCONTINUED reap */
 637 #define SIGNAL_GROUP_EXIT	0x00000004 /* group exit in progress */
 638 #define SIGNAL_GROUP_COREDUMP	0x00000008 /* coredump in progress */
 639 /*
 640  * Pending notifications to parent.
 641  */
 642 #define SIGNAL_CLD_STOPPED	0x00000010
 643 #define SIGNAL_CLD_CONTINUED	0x00000020
 644 #define SIGNAL_CLD_MASK		(SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
 645 
 646 #define SIGNAL_UNKILLABLE	0x00000040 /* for init: ignore fatal signals */
 647 
 648 /* If true, all threads except ->group_exit_task have pending SIGKILL */
 649 static inline int signal_group_exit(const struct signal_struct *sig)
 650 {
 651 	return	(sig->flags & SIGNAL_GROUP_EXIT) ||
 652 		(sig->group_exit_task != NULL);
 653 }
 654 
 655 /*
 656  * Some day this will be a full-fledged user tracking system..
 657  */
 658 struct user_struct {
 659 	atomic_t __count;	/* reference count */
 660 	atomic_t processes;	/* How many processes does this user have? */
 661 	atomic_t files;		/* How many open files does this user have? */
 662 	atomic_t sigpending;	/* How many pending signals does this user have? */
 663 #ifdef CONFIG_INOTIFY_USER
 664 	atomic_t inotify_watches; /* How many inotify watches does this user have? */
 665 	atomic_t inotify_devs;	/* How many inotify devs does this user have opened? */
 666 #endif
 667 #ifdef CONFIG_FANOTIFY
 668 	atomic_t fanotify_listeners;
 669 #endif
 670 #ifdef CONFIG_EPOLL
 671 	atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
 672 #endif
 673 #ifdef CONFIG_POSIX_MQUEUE
 674 	/* protected by mq_lock	*/
 675 	unsigned long mq_bytes;	/* How many bytes can be allocated to mqueue? */
 676 #endif
 677 	unsigned long locked_shm; /* How many pages of mlocked shm ? */
 678 
 679 #ifdef CONFIG_KEYS
 680 	struct key *uid_keyring;	/* UID specific keyring */
 681 	struct key *session_keyring;	/* UID's default session keyring */
 682 #endif
 683 
 684 	/* Hash table maintenance information */
 685 	struct hlist_node uidhash_node;
 686 	kuid_t uid;
 687 
 688 #ifdef CONFIG_PERF_EVENTS
 689 	atomic_long_t locked_vm;
 690 #endif
 691 };
 692 
 693 extern int uids_sysfs_init(void);
 694 
 695 extern struct user_struct *find_user(kuid_t);
 696 
 697 extern struct user_struct root_user;
 698 #define INIT_USER (&root_user)
 699 
 700 
 701 struct backing_dev_info;
 702 struct reclaim_state;
 703 
 704 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
 705 struct sched_info {
 706 	/* cumulative counters */
 707 	unsigned long pcount;	      /* # of times run on this cpu */
 708 	unsigned long long run_delay; /* time spent waiting on a runqueue */
 709 
 710 	/* timestamps */
 711 	unsigned long long last_arrival,/* when we last ran on a cpu */
 712 			   last_queued;	/* when we were last queued to run */
 713 };
 714 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
 715 
 716 #ifdef CONFIG_TASK_DELAY_ACCT
 717 struct task_delay_info {
 718 	spinlock_t	lock;
 719 	unsigned int	flags;	/* Private per-task flags */
 720 
 721 	/* For each stat XXX, add following, aligned appropriately
 722 	 *
 723 	 * struct timespec XXX_start, XXX_end;
 724 	 * u64 XXX_delay;
 725 	 * u32 XXX_count;
 726 	 *
 727 	 * Atomicity of updates to XXX_delay, XXX_count protected by
 728 	 * single lock above (split into XXX_lock if contention is an issue).
 729 	 */
 730 
 731 	/*
 732 	 * XXX_count is incremented on every XXX operation, the delay
 733 	 * associated with the operation is added to XXX_delay.
 734 	 * XXX_delay contains the accumulated delay time in nanoseconds.
 735 	 */
 736 	struct timespec blkio_start, blkio_end;	/* Shared by blkio, swapin */
 737 	u64 blkio_delay;	/* wait for sync block io completion */
 738 	u64 swapin_delay;	/* wait for swapin block io completion */
 739 	u32 blkio_count;	/* total count of the number of sync block */
 740 				/* io operations performed */
 741 	u32 swapin_count;	/* total count of the number of swapin block */
 742 				/* io operations performed */
 743 
 744 	struct timespec freepages_start, freepages_end;
 745 	u64 freepages_delay;	/* wait for memory reclaim */
 746 	u32 freepages_count;	/* total count of memory reclaim */
 747 };
 748 #endif	/* CONFIG_TASK_DELAY_ACCT */
 749 
 750 static inline int sched_info_on(void)
 751 {
 752 #ifdef CONFIG_SCHEDSTATS
 753 	return 1;
 754 #elif defined(CONFIG_TASK_DELAY_ACCT)
 755 	extern int delayacct_on;
 756 	return delayacct_on;
 757 #else
 758 	return 0;
 759 #endif
 760 }
 761 
 762 enum cpu_idle_type {
 763 	CPU_IDLE,
 764 	CPU_NOT_IDLE,
 765 	CPU_NEWLY_IDLE,
 766 	CPU_MAX_IDLE_TYPES
 767 };
 768 
 769 /*
 770  * Increase resolution of cpu_power calculations
 771  */
 772 #define SCHED_POWER_SHIFT	10
 773 #define SCHED_POWER_SCALE	(1L << SCHED_POWER_SHIFT)
 774 
 775 /*
 776  * sched-domains (multiprocessor balancing) declarations:
 777  */
 778 #ifdef CONFIG_SMP
 779 #define SD_LOAD_BALANCE		0x0001	/* Do load balancing on this domain. */
 780 #define SD_BALANCE_NEWIDLE	0x0002	/* Balance when about to become idle */
 781 #define SD_BALANCE_EXEC		0x0004	/* Balance on exec */
 782 #define SD_BALANCE_FORK		0x0008	/* Balance on fork, clone */
 783 #define SD_BALANCE_WAKE		0x0010  /* Balance on wakeup */
 784 #define SD_WAKE_AFFINE		0x0020	/* Wake task to waking CPU */
 785 #define SD_SHARE_CPUPOWER	0x0080	/* Domain members share cpu power */
 786 #define SD_SHARE_PKG_RESOURCES	0x0200	/* Domain members share cpu pkg resources */
 787 #define SD_SERIALIZE		0x0400	/* Only a single load balancing instance */
 788 #define SD_ASYM_PACKING		0x0800  /* Place busy groups earlier in the domain */
 789 #define SD_PREFER_SIBLING	0x1000	/* Prefer to place tasks in a sibling domain */
 790 #define SD_OVERLAP		0x2000	/* sched_domains of this level overlap */
 791 #define SD_NUMA			0x4000	/* cross-node balancing */
 792 
 793 extern int __weak arch_sd_sibiling_asym_packing(void);
 794 
 795 struct sched_domain_attr {
 796 	int relax_domain_level;
 797 };
 798 
 799 #define SD_ATTR_INIT	(struct sched_domain_attr) {	\
 800 	.relax_domain_level = -1,			\
 801 }
 802 
 803 extern int sched_domain_level_max;
 804 
 805 struct sched_group;
 806 
 807 struct sched_domain {
 808 	/* These fields must be setup */
 809 	struct sched_domain *parent;	/* top domain must be null terminated */
 810 	struct sched_domain *child;	/* bottom domain must be null terminated */
 811 	struct sched_group *groups;	/* the balancing groups of the domain */
 812 	unsigned long min_interval;	/* Minimum balance interval ms */
 813 	unsigned long max_interval;	/* Maximum balance interval ms */
 814 	unsigned int busy_factor;	/* less balancing by factor if busy */
 815 	unsigned int imbalance_pct;	/* No balance until over watermark */
 816 	unsigned int cache_nice_tries;	/* Leave cache hot tasks for # tries */
 817 	unsigned int busy_idx;
 818 	unsigned int idle_idx;
 819 	unsigned int newidle_idx;
 820 	unsigned int wake_idx;
 821 	unsigned int forkexec_idx;
 822 	unsigned int smt_gain;
 823 
 824 	int nohz_idle;			/* NOHZ IDLE status */
 825 	int flags;			/* See SD_* */
 826 	int level;
 827 
 828 	/* Runtime fields. */
 829 	unsigned long last_balance;	/* init to jiffies. units in jiffies */
 830 	unsigned int balance_interval;	/* initialise to 1. units in ms. */
 831 	unsigned int nr_balance_failed; /* initialise to 0 */
 832 
 833 	/* idle_balance() stats */
 834 	u64 max_newidle_lb_cost;
 835 	unsigned long next_decay_max_lb_cost;
 836 
 837 #ifdef CONFIG_SCHEDSTATS
 838 	/* load_balance() stats */
 839 	unsigned int lb_count[CPU_MAX_IDLE_TYPES];
 840 	unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
 841 	unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
 842 	unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
 843 	unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
 844 	unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
 845 	unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
 846 	unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
 847 
 848 	/* Active load balancing */
 849 	unsigned int alb_count;
 850 	unsigned int alb_failed;
 851 	unsigned int alb_pushed;
 852 
 853 	/* SD_BALANCE_EXEC stats */
 854 	unsigned int sbe_count;
 855 	unsigned int sbe_balanced;
 856 	unsigned int sbe_pushed;
 857 
 858 	/* SD_BALANCE_FORK stats */
 859 	unsigned int sbf_count;
 860 	unsigned int sbf_balanced;
 861 	unsigned int sbf_pushed;
 862 
 863 	/* try_to_wake_up() stats */
 864 	unsigned int ttwu_wake_remote;
 865 	unsigned int ttwu_move_affine;
 866 	unsigned int ttwu_move_balance;
 867 #endif
 868 #ifdef CONFIG_SCHED_DEBUG
 869 	char *name;
 870 #endif
 871 	union {
 872 		void *private;		/* used during construction */
 873 		struct rcu_head rcu;	/* used during destruction */
 874 	};
 875 
 876 	unsigned int span_weight;
 877 	/*
 878 	 * Span of all CPUs in this domain.
 879 	 *
 880 	 * NOTE: this field is variable length. (Allocated dynamically
 881 	 * by attaching extra space to the end of the structure,
 882 	 * depending on how many CPUs the kernel has booted up with)
 883 	 */
 884 	unsigned long span[0];
 885 };
 886 
 887 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
 888 {
 889 	return to_cpumask(sd->span);
 890 }
 891 
 892 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
 893 				    struct sched_domain_attr *dattr_new);
 894 
 895 /* Allocate an array of sched domains, for partition_sched_domains(). */
 896 cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
 897 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
 898 
 899 bool cpus_share_cache(int this_cpu, int that_cpu);
 900 
 901 #else /* CONFIG_SMP */
 902 
 903 struct sched_domain_attr;
 904 
 905 static inline void
 906 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
 907 			struct sched_domain_attr *dattr_new)
 908 {
 909 }
 910 
 911 static inline bool cpus_share_cache(int this_cpu, int that_cpu)
 912 {
 913 	return true;
 914 }
 915 
 916 #endif	/* !CONFIG_SMP */
 917 
 918 
 919 struct io_context;			/* See blkdev.h */
 920 
 921 
 922 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
 923 extern void prefetch_stack(struct task_struct *t);
 924 #else
 925 static inline void prefetch_stack(struct task_struct *t) { }
 926 #endif
 927 
 928 struct audit_context;		/* See audit.c */
 929 struct mempolicy;
 930 struct pipe_inode_info;
 931 struct uts_namespace;
 932 
 933 struct load_weight {
 934 	unsigned long weight;
 935 	u32 inv_weight;
 936 };
 937 
 938 struct sched_avg {
 939 	/*
 940 	 * These sums represent an infinite geometric series and so are bound
 941 	 * above by 1024/(1-y).  Thus we only need a u32 to store them for all
 942 	 * choices of y < 1-2^(-32)*1024.
 943 	 */
 944 	u32 runnable_avg_sum, runnable_avg_period;
 945 	u64 last_runnable_update;
 946 	s64 decay_count;
 947 	unsigned long load_avg_contrib;
 948 };
 949 
 950 #ifdef CONFIG_SCHEDSTATS
 951 struct sched_statistics {
 952 	u64			wait_start;
 953 	u64			wait_max;
 954 	u64			wait_count;
 955 	u64			wait_sum;
 956 	u64			iowait_count;
 957 	u64			iowait_sum;
 958 
 959 	u64			sleep_start;
 960 	u64			sleep_max;
 961 	s64			sum_sleep_runtime;
 962 
 963 	u64			block_start;
 964 	u64			block_max;
 965 	u64			exec_max;
 966 	u64			slice_max;
 967 
 968 	u64			nr_migrations_cold;
 969 	u64			nr_failed_migrations_affine;
 970 	u64			nr_failed_migrations_running;
 971 	u64			nr_failed_migrations_hot;
 972 	u64			nr_forced_migrations;
 973 
 974 	u64			nr_wakeups;
 975 	u64			nr_wakeups_sync;
 976 	u64			nr_wakeups_migrate;
 977 	u64			nr_wakeups_local;
 978 	u64			nr_wakeups_remote;
 979 	u64			nr_wakeups_affine;
 980 	u64			nr_wakeups_affine_attempts;
 981 	u64			nr_wakeups_passive;
 982 	u64			nr_wakeups_idle;
 983 };
 984 #endif
 985 
 986 struct sched_entity {
 987 	struct load_weight	load;		/* for load-balancing */
 988 	struct rb_node		run_node;
 989 	struct list_head	group_node;
 990 	unsigned int		on_rq;
 991 
 992 	u64			exec_start;
 993 	u64			sum_exec_runtime;
 994 	u64			vruntime;
 995 	u64			prev_sum_exec_runtime;
 996 
 997 	u64			nr_migrations;
 998 
 999 #ifdef CONFIG_SCHEDSTATS
1000 	struct sched_statistics statistics;
1001 #endif
1002 
1003 #ifdef CONFIG_FAIR_GROUP_SCHED
1004 	struct sched_entity	*parent;
1005 	/* rq on which this entity is (to be) queued: */
1006 	struct cfs_rq		*cfs_rq;
1007 	/* rq "owned" by this entity/group: */
1008 	struct cfs_rq		*my_q;
1009 #endif
1010 
1011 #ifdef CONFIG_SMP
1012 	/* Per-entity load-tracking */
1013 	struct sched_avg	avg;
1014 #endif
1015 };
1016 
1017 struct sched_rt_entity {
1018 	struct list_head run_list;
1019 	unsigned long timeout;
1020 	unsigned long watchdog_stamp;
1021 	unsigned int time_slice;
1022 
1023 	struct sched_rt_entity *back;
1024 #ifdef CONFIG_RT_GROUP_SCHED
1025 	struct sched_rt_entity	*parent;
1026 	/* rq on which this entity is (to be) queued: */
1027 	struct rt_rq		*rt_rq;
1028 	/* rq "owned" by this entity/group: */
1029 	struct rt_rq		*my_q;
1030 #endif
1031 };
1032 
1033 
1034 struct rcu_node;
1035 
1036 enum perf_event_task_context {
1037 	perf_invalid_context = -1,
1038 	perf_hw_context = 0,
1039 	perf_sw_context,
1040 	perf_nr_task_contexts,
1041 };
1042 
1043 struct task_struct {
1044 	volatile long state;	/* -1 unrunnable, 0 runnable, >0 stopped */
1045 	void *stack;
1046 	atomic_t usage;
1047 	unsigned int flags;	/* per process flags, defined below */
1048 	unsigned int ptrace;
1049 
1050 #ifdef CONFIG_SMP
1051 	struct llist_node wake_entry;
1052 	int on_cpu;
1053 	struct task_struct *last_wakee;
1054 	unsigned long wakee_flips;
1055 	unsigned long wakee_flip_decay_ts;
1056 
1057 	int wake_cpu;
1058 #endif
1059 	int on_rq;
1060 
1061 	int prio, static_prio, normal_prio;
1062 	unsigned int rt_priority;
1063 	const struct sched_class *sched_class;
1064 	struct sched_entity se;
1065 	struct sched_rt_entity rt;
1066 #ifdef CONFIG_CGROUP_SCHED
1067 	struct task_group *sched_task_group;
1068 #endif
1069 
1070 #ifdef CONFIG_PREEMPT_NOTIFIERS
1071 	/* list of struct preempt_notifier: */
1072 	struct hlist_head preempt_notifiers;
1073 #endif
1074 
1075 #ifdef CONFIG_BLK_DEV_IO_TRACE
1076 	unsigned int btrace_seq;
1077 #endif
1078 
1079 	unsigned int policy;
1080 	int nr_cpus_allowed;
1081 	cpumask_t cpus_allowed;
1082 
1083 #ifdef CONFIG_PREEMPT_RCU
1084 	int rcu_read_lock_nesting;
1085 	char rcu_read_unlock_special;
1086 	struct list_head rcu_node_entry;
1087 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1088 #ifdef CONFIG_TREE_PREEMPT_RCU
1089 	struct rcu_node *rcu_blocked_node;
1090 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1091 #ifdef CONFIG_RCU_BOOST
1092 	struct rt_mutex *rcu_boost_mutex;
1093 #endif /* #ifdef CONFIG_RCU_BOOST */
1094 
1095 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1096 	struct sched_info sched_info;
1097 #endif
1098 
1099 	struct list_head tasks;
1100 #ifdef CONFIG_SMP
1101 	struct plist_node pushable_tasks;
1102 #endif
1103 
1104 	struct mm_struct *mm, *active_mm;
1105 #ifdef CONFIG_COMPAT_BRK
1106 	unsigned brk_randomized:1;
1107 #endif
1108 #if defined(SPLIT_RSS_COUNTING)
1109 	struct task_rss_stat	rss_stat;
1110 #endif
1111 /* task state */
1112 	int exit_state;
1113 	int exit_code, exit_signal;
1114 	int pdeath_signal;  /*  The signal sent when the parent dies  */
1115 	unsigned int jobctl;	/* JOBCTL_*, siglock protected */
1116 
1117 	/* Used for emulating ABI behavior of previous Linux versions */
1118 	unsigned int personality;
1119 
1120 	unsigned did_exec:1;
1121 	unsigned in_execve:1;	/* Tell the LSMs that the process is doing an
1122 				 * execve */
1123 	unsigned in_iowait:1;
1124 
1125 	/* task may not gain privileges */
1126 	unsigned no_new_privs:1;
1127 
1128 	/* Revert to default priority/policy when forking */
1129 	unsigned sched_reset_on_fork:1;
1130 	unsigned sched_contributes_to_load:1;
1131 
1132 	pid_t pid;
1133 	pid_t tgid;
1134 
1135 #ifdef CONFIG_CC_STACKPROTECTOR
1136 	/* Canary value for the -fstack-protector gcc feature */
1137 	unsigned long stack_canary;
1138 #endif
1139 	/*
1140 	 * pointers to (original) parent process, youngest child, younger sibling,
1141 	 * older sibling, respectively.  (p->father can be replaced with
1142 	 * p->real_parent->pid)
1143 	 */
1144 	struct task_struct __rcu *real_parent; /* real parent process */
1145 	struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1146 	/*
1147 	 * children/sibling forms the list of my natural children
1148 	 */
1149 	struct list_head children;	/* list of my children */
1150 	struct list_head sibling;	/* linkage in my parent's children list */
1151 	struct task_struct *group_leader;	/* threadgroup leader */
1152 
1153 	/*
1154 	 * ptraced is the list of tasks this task is using ptrace on.
1155 	 * This includes both natural children and PTRACE_ATTACH targets.
1156 	 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1157 	 */
1158 	struct list_head ptraced;
1159 	struct list_head ptrace_entry;
1160 
1161 	/* PID/PID hash table linkage. */
1162 	struct pid_link pids[PIDTYPE_MAX];
1163 	struct list_head thread_group;
1164 	struct list_head thread_node;
1165 
1166 	struct completion *vfork_done;		/* for vfork() */
1167 	int __user *set_child_tid;		/* CLONE_CHILD_SETTID */
1168 	int __user *clear_child_tid;		/* CLONE_CHILD_CLEARTID */
1169 
1170 	cputime_t utime, stime, utimescaled, stimescaled;
1171 	cputime_t gtime;
1172 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1173 	struct cputime prev_cputime;
1174 #endif
1175 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1176 	seqlock_t vtime_seqlock;
1177 	unsigned long long vtime_snap;
1178 	enum {
1179 		VTIME_SLEEPING = 0,
1180 		VTIME_USER,
1181 		VTIME_SYS,
1182 	} vtime_snap_whence;
1183 #endif
1184 	unsigned long nvcsw, nivcsw; /* context switch counts */
1185 	struct timespec start_time; 		/* monotonic time */
1186 	struct timespec real_start_time;	/* boot based time */
1187 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1188 	unsigned long min_flt, maj_flt;
1189 
1190 	struct task_cputime cputime_expires;
1191 	struct list_head cpu_timers[3];
1192 
1193 /* process credentials */
1194 	const struct cred __rcu *real_cred; /* objective and real subjective task
1195 					 * credentials (COW) */
1196 	const struct cred __rcu *cred;	/* effective (overridable) subjective task
1197 					 * credentials (COW) */
1198 	char comm[TASK_COMM_LEN]; /* executable name excluding path
1199 				     - access with [gs]et_task_comm (which lock
1200 				       it with task_lock())
1201 				     - initialized normally by setup_new_exec */
1202 /* file system info */
1203 	int link_count, total_link_count;
1204 #ifdef CONFIG_SYSVIPC
1205 /* ipc stuff */
1206 	struct sysv_sem sysvsem;
1207 #endif
1208 #ifdef CONFIG_DETECT_HUNG_TASK
1209 /* hung task detection */
1210 	unsigned long last_switch_count;
1211 #endif
1212 /* CPU-specific state of this task */
1213 	struct thread_struct thread;
1214 /* filesystem information */
1215 	struct fs_struct *fs;
1216 /* open file information */
1217 	struct files_struct *files;
1218 /* namespaces */
1219 	struct nsproxy *nsproxy;
1220 /* signal handlers */
1221 	struct signal_struct *signal;
1222 	struct sighand_struct *sighand;
1223 
1224 	sigset_t blocked, real_blocked;
1225 	sigset_t saved_sigmask;	/* restored if set_restore_sigmask() was used */
1226 	struct sigpending pending;
1227 
1228 	unsigned long sas_ss_sp;
1229 	size_t sas_ss_size;
1230 	int (*notifier)(void *priv);
1231 	void *notifier_data;
1232 	sigset_t *notifier_mask;
1233 	struct callback_head *task_works;
1234 
1235 	struct audit_context *audit_context;
1236 #ifdef CONFIG_AUDITSYSCALL
1237 	kuid_t loginuid;
1238 	unsigned int sessionid;
1239 #endif
1240 	struct seccomp seccomp;
1241 
1242 /* Thread group tracking */
1243    	u32 parent_exec_id;
1244    	u32 self_exec_id;
1245 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1246  * mempolicy */
1247 	spinlock_t alloc_lock;
1248 
1249 	/* Protection of the PI data structures: */
1250 	raw_spinlock_t pi_lock;
1251 
1252 #ifdef CONFIG_RT_MUTEXES
1253 	/* PI waiters blocked on a rt_mutex held by this task */
1254 	struct plist_head pi_waiters;
1255 	/* Deadlock detection and priority inheritance handling */
1256 	struct rt_mutex_waiter *pi_blocked_on;
1257 #endif
1258 
1259 #ifdef CONFIG_DEBUG_MUTEXES
1260 	/* mutex deadlock detection */
1261 	struct mutex_waiter *blocked_on;
1262 #endif
1263 #ifdef CONFIG_TRACE_IRQFLAGS
1264 	unsigned int irq_events;
1265 	unsigned long hardirq_enable_ip;
1266 	unsigned long hardirq_disable_ip;
1267 	unsigned int hardirq_enable_event;
1268 	unsigned int hardirq_disable_event;
1269 	int hardirqs_enabled;
1270 	int hardirq_context;
1271 	unsigned long softirq_disable_ip;
1272 	unsigned long softirq_enable_ip;
1273 	unsigned int softirq_disable_event;
1274 	unsigned int softirq_enable_event;
1275 	int softirqs_enabled;
1276 	int softirq_context;
1277 #endif
1278 #ifdef CONFIG_LOCKDEP
1279 # define MAX_LOCK_DEPTH 48UL
1280 	u64 curr_chain_key;
1281 	int lockdep_depth;
1282 	unsigned int lockdep_recursion;
1283 	struct held_lock held_locks[MAX_LOCK_DEPTH];
1284 	gfp_t lockdep_reclaim_gfp;
1285 #endif
1286 
1287 /* journalling filesystem info */
1288 	void *journal_info;
1289 
1290 /* stacked block device info */
1291 	struct bio_list *bio_list;
1292 
1293 #ifdef CONFIG_BLOCK
1294 /* stack plugging */
1295 	struct blk_plug *plug;
1296 #endif
1297 
1298 /* VM state */
1299 	struct reclaim_state *reclaim_state;
1300 
1301 	struct backing_dev_info *backing_dev_info;
1302 
1303 	struct io_context *io_context;
1304 
1305 	unsigned long ptrace_message;
1306 	siginfo_t *last_siginfo; /* For ptrace use.  */
1307 	struct task_io_accounting ioac;
1308 #if defined(CONFIG_TASK_XACCT)
1309 	u64 acct_rss_mem1;	/* accumulated rss usage */
1310 	u64 acct_vm_mem1;	/* accumulated virtual memory usage */
1311 	cputime_t acct_timexpd;	/* stime + utime since last update */
1312 #endif
1313 #ifdef CONFIG_CPUSETS
1314 	nodemask_t mems_allowed;	/* Protected by alloc_lock */
1315 	seqcount_t mems_allowed_seq;	/* Seqence no to catch updates */
1316 	int cpuset_mem_spread_rotor;
1317 	int cpuset_slab_spread_rotor;
1318 #endif
1319 #ifdef CONFIG_CGROUPS
1320 	/* Control Group info protected by css_set_lock */
1321 	struct css_set __rcu *cgroups;
1322 	/* cg_list protected by css_set_lock and tsk->alloc_lock */
1323 	struct list_head cg_list;
1324 #endif
1325 #ifdef CONFIG_FUTEX
1326 	struct robust_list_head __user *robust_list;
1327 #ifdef CONFIG_COMPAT
1328 	struct compat_robust_list_head __user *compat_robust_list;
1329 #endif
1330 	struct list_head pi_state_list;
1331 	struct futex_pi_state *pi_state_cache;
1332 #endif
1333 #ifdef CONFIG_PERF_EVENTS
1334 	struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1335 	struct mutex perf_event_mutex;
1336 	struct list_head perf_event_list;
1337 #endif
1338 #ifdef CONFIG_NUMA
1339 	struct mempolicy *mempolicy;	/* Protected by alloc_lock */
1340 	short il_next;
1341 	short pref_node_fork;
1342 #endif
1343 #ifdef CONFIG_NUMA_BALANCING
1344 	int numa_scan_seq;
1345 	unsigned int numa_scan_period;
1346 	unsigned int numa_scan_period_max;
1347 	int numa_preferred_nid;
1348 	int numa_migrate_deferred;
1349 	unsigned long numa_migrate_retry;
1350 	u64 node_stamp;			/* migration stamp  */
1351 	struct callback_head numa_work;
1352 
1353 	struct list_head numa_entry;
1354 	struct numa_group *numa_group;
1355 
1356 	/*
1357 	 * Exponential decaying average of faults on a per-node basis.
1358 	 * Scheduling placement decisions are made based on the these counts.
1359 	 * The values remain static for the duration of a PTE scan
1360 	 */
1361 	unsigned long *numa_faults;
1362 	unsigned long total_numa_faults;
1363 
1364 	/*
1365 	 * numa_faults_buffer records faults per node during the current
1366 	 * scan window. When the scan completes, the counts in numa_faults
1367 	 * decay and these values are copied.
1368 	 */
1369 	unsigned long *numa_faults_buffer;
1370 
1371 	/*
1372 	 * numa_faults_locality tracks if faults recorded during the last
1373 	 * scan window were remote/local. The task scan period is adapted
1374 	 * based on the locality of the faults with different weights
1375 	 * depending on whether they were shared or private faults
1376 	 */
1377 	unsigned long numa_faults_locality[2];
1378 
1379 	unsigned long numa_pages_migrated;
1380 #endif /* CONFIG_NUMA_BALANCING */
1381 
1382 	struct rcu_head rcu;
1383 
1384 	/*
1385 	 * cache last used pipe for splice
1386 	 */
1387 	struct pipe_inode_info *splice_pipe;
1388 
1389 	struct page_frag task_frag;
1390 
1391 #ifdef	CONFIG_TASK_DELAY_ACCT
1392 	struct task_delay_info *delays;
1393 #endif
1394 #ifdef CONFIG_FAULT_INJECTION
1395 	int make_it_fail;
1396 #endif
1397 	/*
1398 	 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1399 	 * balance_dirty_pages() for some dirty throttling pause
1400 	 */
1401 	int nr_dirtied;
1402 	int nr_dirtied_pause;
1403 	unsigned long dirty_paused_when; /* start of a write-and-pause period */
1404 
1405 #ifdef CONFIG_LATENCYTOP
1406 	int latency_record_count;
1407 	struct latency_record latency_record[LT_SAVECOUNT];
1408 #endif
1409 	/*
1410 	 * time slack values; these are used to round up poll() and
1411 	 * select() etc timeout values. These are in nanoseconds.
1412 	 */
1413 	unsigned long timer_slack_ns;
1414 	unsigned long default_timer_slack_ns;
1415 
1416 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1417 	/* Index of current stored address in ret_stack */
1418 	int curr_ret_stack;
1419 	/* Stack of return addresses for return function tracing */
1420 	struct ftrace_ret_stack	*ret_stack;
1421 	/* time stamp for last schedule */
1422 	unsigned long long ftrace_timestamp;
1423 	/*
1424 	 * Number of functions that haven't been traced
1425 	 * because of depth overrun.
1426 	 */
1427 	atomic_t trace_overrun;
1428 	/* Pause for the tracing */
1429 	atomic_t tracing_graph_pause;
1430 #endif
1431 #ifdef CONFIG_TRACING
1432 	/* state flags for use by tracers */
1433 	unsigned long trace;
1434 	/* bitmask and counter of trace recursion */
1435 	unsigned long trace_recursion;
1436 #endif /* CONFIG_TRACING */
1437 #ifdef CONFIG_MEMCG /* memcg uses this to do batch job */
1438 	struct memcg_batch_info {
1439 		int do_batch;	/* incremented when batch uncharge started */
1440 		struct mem_cgroup *memcg; /* target memcg of uncharge */
1441 		unsigned long nr_pages;	/* uncharged usage */
1442 		unsigned long memsw_nr_pages; /* uncharged mem+swap usage */
1443 	} memcg_batch;
1444 	unsigned int memcg_kmem_skip_account;
1445 	struct memcg_oom_info {
1446 		struct mem_cgroup *memcg;
1447 		gfp_t gfp_mask;
1448 		int order;
1449 		unsigned int may_oom:1;
1450 	} memcg_oom;
1451 #endif
1452 #ifdef CONFIG_UPROBES
1453 	struct uprobe_task *utask;
1454 #endif
1455 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1456 	unsigned int	sequential_io;
1457 	unsigned int	sequential_io_avg;
1458 #endif
1459 };
1460 
1461 /* Future-safe accessor for struct task_struct's cpus_allowed. */
1462 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1463 
1464 #define TNF_MIGRATED	0x01
1465 #define TNF_NO_GROUP	0x02
1466 #define TNF_SHARED	0x04
1467 #define TNF_FAULT_LOCAL	0x08
1468 
1469 #ifdef CONFIG_NUMA_BALANCING
1470 extern void task_numa_fault(int last_node, int node, int pages, int flags);
1471 extern pid_t task_numa_group_id(struct task_struct *p);
1472 extern void set_numabalancing_state(bool enabled);
1473 extern void task_numa_free(struct task_struct *p);
1474 
1475 extern unsigned int sysctl_numa_balancing_migrate_deferred;
1476 #else
1477 static inline void task_numa_fault(int last_node, int node, int pages,
1478 				   int flags)
1479 {
1480 }
1481 static inline pid_t task_numa_group_id(struct task_struct *p)
1482 {
1483 	return 0;
1484 }
1485 static inline void set_numabalancing_state(bool enabled)
1486 {
1487 }
1488 static inline void task_numa_free(struct task_struct *p)
1489 {
1490 }
1491 #endif
1492 
1493 static inline struct pid *task_pid(struct task_struct *task)
1494 {
1495 	return task->pids[PIDTYPE_PID].pid;
1496 }
1497 
1498 static inline struct pid *task_tgid(struct task_struct *task)
1499 {
1500 	return task->group_leader->pids[PIDTYPE_PID].pid;
1501 }
1502 
1503 /*
1504  * Without tasklist or rcu lock it is not safe to dereference
1505  * the result of task_pgrp/task_session even if task == current,
1506  * we can race with another thread doing sys_setsid/sys_setpgid.
1507  */
1508 static inline struct pid *task_pgrp(struct task_struct *task)
1509 {
1510 	return task->group_leader->pids[PIDTYPE_PGID].pid;
1511 }
1512 
1513 static inline struct pid *task_session(struct task_struct *task)
1514 {
1515 	return task->group_leader->pids[PIDTYPE_SID].pid;
1516 }
1517 
1518 struct pid_namespace;
1519 
1520 /*
1521  * the helpers to get the task's different pids as they are seen
1522  * from various namespaces
1523  *
1524  * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
1525  * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
1526  *                     current.
1527  * task_xid_nr_ns()  : id seen from the ns specified;
1528  *
1529  * set_task_vxid()   : assigns a virtual id to a task;
1530  *
1531  * see also pid_nr() etc in include/linux/pid.h
1532  */
1533 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1534 			struct pid_namespace *ns);
1535 
1536 static inline pid_t task_pid_nr(struct task_struct *tsk)
1537 {
1538 	return tsk->pid;
1539 }
1540 
1541 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1542 					struct pid_namespace *ns)
1543 {
1544 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1545 }
1546 
1547 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1548 {
1549 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1550 }
1551 
1552 
1553 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1554 {
1555 	return tsk->tgid;
1556 }
1557 
1558 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1559 
1560 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1561 {
1562 	return pid_vnr(task_tgid(tsk));
1563 }
1564 
1565 
1566 static int pid_alive(const struct task_struct *p);
1567 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1568 {
1569 	pid_t pid = 0;
1570 
1571 	rcu_read_lock();
1572 	if (pid_alive(tsk))
1573 		pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1574 	rcu_read_unlock();
1575 
1576 	return pid;
1577 }
1578 
1579 static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1580 {
1581 	return task_ppid_nr_ns(tsk, &init_pid_ns);
1582 }
1583 
1584 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1585 					struct pid_namespace *ns)
1586 {
1587 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1588 }
1589 
1590 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1591 {
1592 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1593 }
1594 
1595 
1596 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1597 					struct pid_namespace *ns)
1598 {
1599 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1600 }
1601 
1602 static inline pid_t task_session_vnr(struct task_struct *tsk)
1603 {
1604 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1605 }
1606 
1607 /* obsolete, do not use */
1608 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1609 {
1610 	return task_pgrp_nr_ns(tsk, &init_pid_ns);
1611 }
1612 
1613 /**
1614  * pid_alive - check that a task structure is not stale
1615  * @p: Task structure to be checked.
1616  *
1617  * Test if a process is not yet dead (at most zombie state)
1618  * If pid_alive fails, then pointers within the task structure
1619  * can be stale and must not be dereferenced.
1620  *
1621  * Return: 1 if the process is alive. 0 otherwise.
1622  */
1623 static inline int pid_alive(const struct task_struct *p)
1624 {
1625 	return p->pids[PIDTYPE_PID].pid != NULL;
1626 }
1627 
1628 /**
1629  * is_global_init - check if a task structure is init
1630  * @tsk: Task structure to be checked.
1631  *
1632  * Check if a task structure is the first user space task the kernel created.
1633  *
1634  * Return: 1 if the task structure is init. 0 otherwise.
1635  */
1636 static inline int is_global_init(struct task_struct *tsk)
1637 {
1638 	return tsk->pid == 1;
1639 }
1640 
1641 extern struct pid *cad_pid;
1642 
1643 extern void free_task(struct task_struct *tsk);
1644 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1645 
1646 extern void __put_task_struct(struct task_struct *t);
1647 
1648 static inline void put_task_struct(struct task_struct *t)
1649 {
1650 	if (atomic_dec_and_test(&t->usage))
1651 		__put_task_struct(t);
1652 }
1653 
1654 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1655 extern void task_cputime(struct task_struct *t,
1656 			 cputime_t *utime, cputime_t *stime);
1657 extern void task_cputime_scaled(struct task_struct *t,
1658 				cputime_t *utimescaled, cputime_t *stimescaled);
1659 extern cputime_t task_gtime(struct task_struct *t);
1660 #else
1661 static inline void task_cputime(struct task_struct *t,
1662 				cputime_t *utime, cputime_t *stime)
1663 {
1664 	if (utime)
1665 		*utime = t->utime;
1666 	if (stime)
1667 		*stime = t->stime;
1668 }
1669 
1670 static inline void task_cputime_scaled(struct task_struct *t,
1671 				       cputime_t *utimescaled,
1672 				       cputime_t *stimescaled)
1673 {
1674 	if (utimescaled)
1675 		*utimescaled = t->utimescaled;
1676 	if (stimescaled)
1677 		*stimescaled = t->stimescaled;
1678 }
1679 
1680 static inline cputime_t task_gtime(struct task_struct *t)
1681 {
1682 	return t->gtime;
1683 }
1684 #endif
1685 extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
1686 extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
1687 
1688 /*
1689  * Per process flags
1690  */
1691 #define PF_EXITING	0x00000004	/* getting shut down */
1692 #define PF_EXITPIDONE	0x00000008	/* pi exit done on shut down */
1693 #define PF_VCPU		0x00000010	/* I'm a virtual CPU */
1694 #define PF_WQ_WORKER	0x00000020	/* I'm a workqueue worker */
1695 #define PF_FORKNOEXEC	0x00000040	/* forked but didn't exec */
1696 #define PF_MCE_PROCESS  0x00000080      /* process policy on mce errors */
1697 #define PF_SUPERPRIV	0x00000100	/* used super-user privileges */
1698 #define PF_DUMPCORE	0x00000200	/* dumped core */
1699 #define PF_SIGNALED	0x00000400	/* killed by a signal */
1700 #define PF_MEMALLOC	0x00000800	/* Allocating memory */
1701 #define PF_NPROC_EXCEEDED 0x00001000	/* set_user noticed that RLIMIT_NPROC was exceeded */
1702 #define PF_USED_MATH	0x00002000	/* if unset the fpu must be initialized before use */
1703 #define PF_USED_ASYNC	0x00004000	/* used async_schedule*(), used by module init */
1704 #define PF_NOFREEZE	0x00008000	/* this thread should not be frozen */
1705 #define PF_FROZEN	0x00010000	/* frozen for system suspend */
1706 #define PF_FSTRANS	0x00020000	/* inside a filesystem transaction */
1707 #define PF_KSWAPD	0x00040000	/* I am kswapd */
1708 #define PF_MEMALLOC_NOIO 0x00080000	/* Allocating memory without IO involved */
1709 #define PF_LESS_THROTTLE 0x00100000	/* Throttle me less: I clean memory */
1710 #define PF_KTHREAD	0x00200000	/* I am a kernel thread */
1711 #define PF_RANDOMIZE	0x00400000	/* randomize virtual address space */
1712 #define PF_SWAPWRITE	0x00800000	/* Allowed to write to swap */
1713 #define PF_SPREAD_PAGE	0x01000000	/* Spread page cache over cpuset */
1714 #define PF_SPREAD_SLAB	0x02000000	/* Spread some slab caches over cpuset */
1715 #define PF_NO_SETAFFINITY 0x04000000	/* Userland is not allowed to meddle with cpus_allowed */
1716 #define PF_MCE_EARLY    0x08000000      /* Early kill for mce process policy */
1717 #define PF_MEMPOLICY	0x10000000	/* Non-default NUMA mempolicy */
1718 #define PF_MUTEX_TESTER	0x20000000	/* Thread belongs to the rt mutex tester */
1719 #define PF_FREEZER_SKIP	0x40000000	/* Freezer should not count it as freezable */
1720 #define PF_SUSPEND_TASK 0x80000000      /* this thread called freeze_processes and should not be frozen */
1721 
1722 /*
1723  * Only the _current_ task can read/write to tsk->flags, but other
1724  * tasks can access tsk->flags in readonly mode for example
1725  * with tsk_used_math (like during threaded core dumping).
1726  * There is however an exception to this rule during ptrace
1727  * or during fork: the ptracer task is allowed to write to the
1728  * child->flags of its traced child (same goes for fork, the parent
1729  * can write to the child->flags), because we're guaranteed the
1730  * child is not running and in turn not changing child->flags
1731  * at the same time the parent does it.
1732  */
1733 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1734 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1735 #define clear_used_math() clear_stopped_child_used_math(current)
1736 #define set_used_math() set_stopped_child_used_math(current)
1737 #define conditional_stopped_child_used_math(condition, child) \
1738 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1739 #define conditional_used_math(condition) \
1740 	conditional_stopped_child_used_math(condition, current)
1741 #define copy_to_stopped_child_used_math(child) \
1742 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1743 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1744 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1745 #define used_math() tsk_used_math(current)
1746 
1747 /* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags */
1748 static inline gfp_t memalloc_noio_flags(gfp_t flags)
1749 {
1750 	if (unlikely(current->flags & PF_MEMALLOC_NOIO))
1751 		flags &= ~__GFP_IO;
1752 	return flags;
1753 }
1754 
1755 static inline unsigned int memalloc_noio_save(void)
1756 {
1757 	unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
1758 	current->flags |= PF_MEMALLOC_NOIO;
1759 	return flags;
1760 }
1761 
1762 static inline void memalloc_noio_restore(unsigned int flags)
1763 {
1764 	current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
1765 }
1766 
1767 /*
1768  * task->jobctl flags
1769  */
1770 #define JOBCTL_STOP_SIGMASK	0xffff	/* signr of the last group stop */
1771 
1772 #define JOBCTL_STOP_DEQUEUED_BIT 16	/* stop signal dequeued */
1773 #define JOBCTL_STOP_PENDING_BIT	17	/* task should stop for group stop */
1774 #define JOBCTL_STOP_CONSUME_BIT	18	/* consume group stop count */
1775 #define JOBCTL_TRAP_STOP_BIT	19	/* trap for STOP */
1776 #define JOBCTL_TRAP_NOTIFY_BIT	20	/* trap for NOTIFY */
1777 #define JOBCTL_TRAPPING_BIT	21	/* switching to TRACED */
1778 #define JOBCTL_LISTENING_BIT	22	/* ptracer is listening for events */
1779 
1780 #define JOBCTL_STOP_DEQUEUED	(1 << JOBCTL_STOP_DEQUEUED_BIT)
1781 #define JOBCTL_STOP_PENDING	(1 << JOBCTL_STOP_PENDING_BIT)
1782 #define JOBCTL_STOP_CONSUME	(1 << JOBCTL_STOP_CONSUME_BIT)
1783 #define JOBCTL_TRAP_STOP	(1 << JOBCTL_TRAP_STOP_BIT)
1784 #define JOBCTL_TRAP_NOTIFY	(1 << JOBCTL_TRAP_NOTIFY_BIT)
1785 #define JOBCTL_TRAPPING		(1 << JOBCTL_TRAPPING_BIT)
1786 #define JOBCTL_LISTENING	(1 << JOBCTL_LISTENING_BIT)
1787 
1788 #define JOBCTL_TRAP_MASK	(JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
1789 #define JOBCTL_PENDING_MASK	(JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
1790 
1791 extern bool task_set_jobctl_pending(struct task_struct *task,
1792 				    unsigned int mask);
1793 extern void task_clear_jobctl_trapping(struct task_struct *task);
1794 extern void task_clear_jobctl_pending(struct task_struct *task,
1795 				      unsigned int mask);
1796 
1797 #ifdef CONFIG_PREEMPT_RCU
1798 
1799 #define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */
1800 #define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */
1801 
1802 static inline void rcu_copy_process(struct task_struct *p)
1803 {
1804 	p->rcu_read_lock_nesting = 0;
1805 	p->rcu_read_unlock_special = 0;
1806 #ifdef CONFIG_TREE_PREEMPT_RCU
1807 	p->rcu_blocked_node = NULL;
1808 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1809 #ifdef CONFIG_RCU_BOOST
1810 	p->rcu_boost_mutex = NULL;
1811 #endif /* #ifdef CONFIG_RCU_BOOST */
1812 	INIT_LIST_HEAD(&p->rcu_node_entry);
1813 }
1814 
1815 #else
1816 
1817 static inline void rcu_copy_process(struct task_struct *p)
1818 {
1819 }
1820 
1821 #endif
1822 
1823 static inline void tsk_restore_flags(struct task_struct *task,
1824 				unsigned long orig_flags, unsigned long flags)
1825 {
1826 	task->flags &= ~flags;
1827 	task->flags |= orig_flags & flags;
1828 }
1829 
1830 #ifdef CONFIG_SMP
1831 extern void do_set_cpus_allowed(struct task_struct *p,
1832 			       const struct cpumask *new_mask);
1833 
1834 extern int set_cpus_allowed_ptr(struct task_struct *p,
1835 				const struct cpumask *new_mask);
1836 #else
1837 static inline void do_set_cpus_allowed(struct task_struct *p,
1838 				      const struct cpumask *new_mask)
1839 {
1840 }
1841 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1842 				       const struct cpumask *new_mask)
1843 {
1844 	if (!cpumask_test_cpu(0, new_mask))
1845 		return -EINVAL;
1846 	return 0;
1847 }
1848 #endif
1849 
1850 #ifdef CONFIG_NO_HZ_COMMON
1851 void calc_load_enter_idle(void);
1852 void calc_load_exit_idle(void);
1853 #else
1854 static inline void calc_load_enter_idle(void) { }
1855 static inline void calc_load_exit_idle(void) { }
1856 #endif /* CONFIG_NO_HZ_COMMON */
1857 
1858 #ifndef CONFIG_CPUMASK_OFFSTACK
1859 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1860 {
1861 	return set_cpus_allowed_ptr(p, &new_mask);
1862 }
1863 #endif
1864 
1865 /*
1866  * Do not use outside of architecture code which knows its limitations.
1867  *
1868  * sched_clock() has no promise of monotonicity or bounded drift between
1869  * CPUs, use (which you should not) requires disabling IRQs.
1870  *
1871  * Please use one of the three interfaces below.
1872  */
1873 extern unsigned long long notrace sched_clock(void);
1874 /*
1875  * See the comment in kernel/sched/clock.c
1876  */
1877 extern u64 cpu_clock(int cpu);
1878 extern u64 local_clock(void);
1879 extern u64 sched_clock_cpu(int cpu);
1880 
1881 
1882 extern void sched_clock_init(void);
1883 
1884 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1885 static inline void sched_clock_tick(void)
1886 {
1887 }
1888 
1889 static inline void sched_clock_idle_sleep_event(void)
1890 {
1891 }
1892 
1893 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1894 {
1895 }
1896 #else
1897 /*
1898  * Architectures can set this to 1 if they have specified
1899  * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
1900  * but then during bootup it turns out that sched_clock()
1901  * is reliable after all:
1902  */
1903 extern int sched_clock_stable;
1904 
1905 extern void sched_clock_tick(void);
1906 extern void sched_clock_idle_sleep_event(void);
1907 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1908 #endif
1909 
1910 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1911 /*
1912  * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
1913  * The reason for this explicit opt-in is not to have perf penalty with
1914  * slow sched_clocks.
1915  */
1916 extern void enable_sched_clock_irqtime(void);
1917 extern void disable_sched_clock_irqtime(void);
1918 #else
1919 static inline void enable_sched_clock_irqtime(void) {}
1920 static inline void disable_sched_clock_irqtime(void) {}
1921 #endif
1922 
1923 extern unsigned long long
1924 task_sched_runtime(struct task_struct *task);
1925 
1926 /* sched_exec is called by processes performing an exec */
1927 #ifdef CONFIG_SMP
1928 extern void sched_exec(void);
1929 #else
1930 #define sched_exec()   {}
1931 #endif
1932 
1933 extern void sched_clock_idle_sleep_event(void);
1934 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1935 
1936 #ifdef CONFIG_HOTPLUG_CPU
1937 extern void idle_task_exit(void);
1938 #else
1939 static inline void idle_task_exit(void) {}
1940 #endif
1941 
1942 #if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP)
1943 extern void wake_up_nohz_cpu(int cpu);
1944 #else
1945 static inline void wake_up_nohz_cpu(int cpu) { }
1946 #endif
1947 
1948 #ifdef CONFIG_NO_HZ_FULL
1949 extern bool sched_can_stop_tick(void);
1950 extern u64 scheduler_tick_max_deferment(void);
1951 #else
1952 static inline bool sched_can_stop_tick(void) { return false; }
1953 #endif
1954 
1955 #ifdef CONFIG_SCHED_AUTOGROUP
1956 extern void sched_autogroup_create_attach(struct task_struct *p);
1957 extern void sched_autogroup_detach(struct task_struct *p);
1958 extern void sched_autogroup_fork(struct signal_struct *sig);
1959 extern void sched_autogroup_exit(struct signal_struct *sig);
1960 #ifdef CONFIG_PROC_FS
1961 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
1962 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
1963 #endif
1964 #else
1965 static inline void sched_autogroup_create_attach(struct task_struct *p) { }
1966 static inline void sched_autogroup_detach(struct task_struct *p) { }
1967 static inline void sched_autogroup_fork(struct signal_struct *sig) { }
1968 static inline void sched_autogroup_exit(struct signal_struct *sig) { }
1969 #endif
1970 
1971 extern bool yield_to(struct task_struct *p, bool preempt);
1972 extern void set_user_nice(struct task_struct *p, long nice);
1973 extern int task_prio(const struct task_struct *p);
1974 extern int task_nice(const struct task_struct *p);
1975 extern int can_nice(const struct task_struct *p, const int nice);
1976 extern int task_curr(const struct task_struct *p);
1977 extern int idle_cpu(int cpu);
1978 extern int sched_setscheduler(struct task_struct *, int,
1979 			      const struct sched_param *);
1980 extern int sched_setscheduler_nocheck(struct task_struct *, int,
1981 				      const struct sched_param *);
1982 extern struct task_struct *idle_task(int cpu);
1983 /**
1984  * is_idle_task - is the specified task an idle task?
1985  * @p: the task in question.
1986  *
1987  * Return: 1 if @p is an idle task. 0 otherwise.
1988  */
1989 static inline bool is_idle_task(const struct task_struct *p)
1990 {
1991 	return p->pid == 0;
1992 }
1993 extern struct task_struct *curr_task(int cpu);
1994 extern void set_curr_task(int cpu, struct task_struct *p);
1995 
1996 void yield(void);
1997 
1998 /*
1999  * The default (Linux) execution domain.
2000  */
2001 extern struct exec_domain	default_exec_domain;
2002 
2003 union thread_union {
2004 	struct thread_info thread_info;
2005 	unsigned long stack[THREAD_SIZE/sizeof(long)];
2006 };
2007 
2008 #ifndef __HAVE_ARCH_KSTACK_END
2009 static inline int kstack_end(void *addr)
2010 {
2011 	/* Reliable end of stack detection:
2012 	 * Some APM bios versions misalign the stack
2013 	 */
2014 	return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2015 }
2016 #endif
2017 
2018 extern union thread_union init_thread_union;
2019 extern struct task_struct init_task;
2020 
2021 extern struct   mm_struct init_mm;
2022 
2023 extern struct pid_namespace init_pid_ns;
2024 
2025 /*
2026  * find a task by one of its numerical ids
2027  *
2028  * find_task_by_pid_ns():
2029  *      finds a task by its pid in the specified namespace
2030  * find_task_by_vpid():
2031  *      finds a task by its virtual pid
2032  *
2033  * see also find_vpid() etc in include/linux/pid.h
2034  */
2035 
2036 extern struct task_struct *find_task_by_vpid(pid_t nr);
2037 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2038 		struct pid_namespace *ns);
2039 
2040 /* per-UID process charging. */
2041 extern struct user_struct * alloc_uid(kuid_t);
2042 static inline struct user_struct *get_uid(struct user_struct *u)
2043 {
2044 	atomic_inc(&u->__count);
2045 	return u;
2046 }
2047 extern void free_uid(struct user_struct *);
2048 
2049 #include <asm/current.h>
2050 
2051 extern void xtime_update(unsigned long ticks);
2052 
2053 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2054 extern int wake_up_process(struct task_struct *tsk);
2055 extern void wake_up_new_task(struct task_struct *tsk);
2056 #ifdef CONFIG_SMP
2057  extern void kick_process(struct task_struct *tsk);
2058 #else
2059  static inline void kick_process(struct task_struct *tsk) { }
2060 #endif
2061 extern void sched_fork(unsigned long clone_flags, struct task_struct *p);
2062 extern void sched_dead(struct task_struct *p);
2063 
2064 extern void proc_caches_init(void);
2065 extern void flush_signals(struct task_struct *);
2066 extern void __flush_signals(struct task_struct *);
2067 extern void ignore_signals(struct task_struct *);
2068 extern void flush_signal_handlers(struct task_struct *, int force_default);
2069 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2070 
2071 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
2072 {
2073 	unsigned long flags;
2074 	int ret;
2075 
2076 	spin_lock_irqsave(&tsk->sighand->siglock, flags);
2077 	ret = dequeue_signal(tsk, mask, info);
2078 	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2079 
2080 	return ret;
2081 }
2082 
2083 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2084 			      sigset_t *mask);
2085 extern void unblock_all_signals(void);
2086 extern void release_task(struct task_struct * p);
2087 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2088 extern int force_sigsegv(int, struct task_struct *);
2089 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2090 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2091 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2092 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2093 				const struct cred *, u32);
2094 extern int kill_pgrp(struct pid *pid, int sig, int priv);
2095 extern int kill_pid(struct pid *pid, int sig, int priv);
2096 extern int kill_proc_info(int, struct siginfo *, pid_t);
2097 extern __must_check bool do_notify_parent(struct task_struct *, int);
2098 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2099 extern void force_sig(int, struct task_struct *);
2100 extern int send_sig(int, struct task_struct *, int);
2101 extern int zap_other_threads(struct task_struct *p);
2102 extern struct sigqueue *sigqueue_alloc(void);
2103 extern void sigqueue_free(struct sigqueue *);
2104 extern int send_sigqueue(struct sigqueue *,  struct task_struct *, int group);
2105 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2106 
2107 static inline void restore_saved_sigmask(void)
2108 {
2109 	if (test_and_clear_restore_sigmask())
2110 		__set_current_blocked(&current->saved_sigmask);
2111 }
2112 
2113 static inline sigset_t *sigmask_to_save(void)
2114 {
2115 	sigset_t *res = &current->blocked;
2116 	if (unlikely(test_restore_sigmask()))
2117 		res = &current->saved_sigmask;
2118 	return res;
2119 }
2120 
2121 static inline int kill_cad_pid(int sig, int priv)
2122 {
2123 	return kill_pid(cad_pid, sig, priv);
2124 }
2125 
2126 /* These can be the second arg to send_sig_info/send_group_sig_info.  */
2127 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2128 #define SEND_SIG_PRIV	((struct siginfo *) 1)
2129 #define SEND_SIG_FORCED	((struct siginfo *) 2)
2130 
2131 /*
2132  * True if we are on the alternate signal stack.
2133  */
2134 static inline int on_sig_stack(unsigned long sp)
2135 {
2136 #ifdef CONFIG_STACK_GROWSUP
2137 	return sp >= current->sas_ss_sp &&
2138 		sp - current->sas_ss_sp < current->sas_ss_size;
2139 #else
2140 	return sp > current->sas_ss_sp &&
2141 		sp - current->sas_ss_sp <= current->sas_ss_size;
2142 #endif
2143 }
2144 
2145 static inline int sas_ss_flags(unsigned long sp)
2146 {
2147 	return (current->sas_ss_size == 0 ? SS_DISABLE
2148 		: on_sig_stack(sp) ? SS_ONSTACK : 0);
2149 }
2150 
2151 static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
2152 {
2153 	if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
2154 #ifdef CONFIG_STACK_GROWSUP
2155 		return current->sas_ss_sp;
2156 #else
2157 		return current->sas_ss_sp + current->sas_ss_size;
2158 #endif
2159 	return sp;
2160 }
2161 
2162 /*
2163  * Routines for handling mm_structs
2164  */
2165 extern struct mm_struct * mm_alloc(void);
2166 
2167 /* mmdrop drops the mm and the page tables */
2168 extern void __mmdrop(struct mm_struct *);
2169 static inline void mmdrop(struct mm_struct * mm)
2170 {
2171 	if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2172 		__mmdrop(mm);
2173 }
2174 
2175 /* mmput gets rid of the mappings and all user-space */
2176 extern void mmput(struct mm_struct *);
2177 /* Grab a reference to a task's mm, if it is not already going away */
2178 extern struct mm_struct *get_task_mm(struct task_struct *task);
2179 /*
2180  * Grab a reference to a task's mm, if it is not already going away
2181  * and ptrace_may_access with the mode parameter passed to it
2182  * succeeds.
2183  */
2184 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
2185 /* Remove the current tasks stale references to the old mm_struct */
2186 extern void mm_release(struct task_struct *, struct mm_struct *);
2187 /* Allocate a new mm structure and copy contents from tsk->mm */
2188 extern struct mm_struct *dup_mm(struct task_struct *tsk);
2189 
2190 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2191 			struct task_struct *);
2192 extern void flush_thread(void);
2193 extern void exit_thread(void);
2194 
2195 extern void exit_files(struct task_struct *);
2196 extern void __cleanup_sighand(struct sighand_struct *);
2197 
2198 extern void exit_itimers(struct signal_struct *);
2199 extern void flush_itimer_signals(void);
2200 
2201 extern void do_group_exit(int);
2202 
2203 extern int allow_signal(int);
2204 extern int disallow_signal(int);
2205 
2206 extern int do_execve(const char *,
2207 		     const char __user * const __user *,
2208 		     const char __user * const __user *);
2209 extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
2210 struct task_struct *fork_idle(int);
2211 extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
2212 
2213 extern void set_task_comm(struct task_struct *tsk, char *from);
2214 extern char *get_task_comm(char *to, struct task_struct *tsk);
2215 
2216 #ifdef CONFIG_SMP
2217 void scheduler_ipi(void);
2218 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2219 #else
2220 static inline void scheduler_ipi(void) { }
2221 static inline unsigned long wait_task_inactive(struct task_struct *p,
2222 					       long match_state)
2223 {
2224 	return 1;
2225 }
2226 #endif
2227 
2228 #define next_task(p) \
2229 	list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2230 
2231 #define for_each_process(p) \
2232 	for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2233 
2234 extern bool current_is_single_threaded(void);
2235 
2236 /*
2237  * Careful: do_each_thread/while_each_thread is a double loop so
2238  *          'break' will not work as expected - use goto instead.
2239  */
2240 #define do_each_thread(g, t) \
2241 	for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2242 
2243 #define while_each_thread(g, t) \
2244 	while ((t = next_thread(t)) != g)
2245 
2246 #define __for_each_thread(signal, t)	\
2247 	list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node)
2248 
2249 #define for_each_thread(p, t)		\
2250 	__for_each_thread((p)->signal, t)
2251 
2252 /* Careful: this is a double loop, 'break' won't work as expected. */
2253 #define for_each_process_thread(p, t)	\
2254 	for_each_process(p) for_each_thread(p, t)
2255 
2256 static inline int get_nr_threads(struct task_struct *tsk)
2257 {
2258 	return tsk->signal->nr_threads;
2259 }
2260 
2261 static inline bool thread_group_leader(struct task_struct *p)
2262 {
2263 	return p->exit_signal >= 0;
2264 }
2265 
2266 /* Do to the insanities of de_thread it is possible for a process
2267  * to have the pid of the thread group leader without actually being
2268  * the thread group leader.  For iteration through the pids in proc
2269  * all we care about is that we have a task with the appropriate
2270  * pid, we don't actually care if we have the right task.
2271  */
2272 static inline bool has_group_leader_pid(struct task_struct *p)
2273 {
2274 	return task_pid(p) == p->signal->leader_pid;
2275 }
2276 
2277 static inline
2278 bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
2279 {
2280 	return p1->signal == p2->signal;
2281 }
2282 
2283 static inline struct task_struct *next_thread(const struct task_struct *p)
2284 {
2285 	return list_entry_rcu(p->thread_group.next,
2286 			      struct task_struct, thread_group);
2287 }
2288 
2289 static inline int thread_group_empty(struct task_struct *p)
2290 {
2291 	return list_empty(&p->thread_group);
2292 }
2293 
2294 #define delay_group_leader(p) \
2295 		(thread_group_leader(p) && !thread_group_empty(p))
2296 
2297 /*
2298  * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2299  * subscriptions and synchronises with wait4().  Also used in procfs.  Also
2300  * pins the final release of task.io_context.  Also protects ->cpuset and
2301  * ->cgroup.subsys[]. And ->vfork_done.
2302  *
2303  * Nests both inside and outside of read_lock(&tasklist_lock).
2304  * It must not be nested with write_lock_irq(&tasklist_lock),
2305  * neither inside nor outside.
2306  */
2307 static inline void task_lock(struct task_struct *p)
2308 {
2309 	spin_lock(&p->alloc_lock);
2310 }
2311 
2312 static inline void task_unlock(struct task_struct *p)
2313 {
2314 	spin_unlock(&p->alloc_lock);
2315 }
2316 
2317 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
2318 							unsigned long *flags);
2319 
2320 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2321 						       unsigned long *flags)
2322 {
2323 	struct sighand_struct *ret;
2324 
2325 	ret = __lock_task_sighand(tsk, flags);
2326 	(void)__cond_lock(&tsk->sighand->siglock, ret);
2327 	return ret;
2328 }
2329 
2330 static inline void unlock_task_sighand(struct task_struct *tsk,
2331 						unsigned long *flags)
2332 {
2333 	spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2334 }
2335 
2336 #ifdef CONFIG_CGROUPS
2337 static inline void threadgroup_change_begin(struct task_struct *tsk)
2338 {
2339 	down_read(&tsk->signal->group_rwsem);
2340 }
2341 static inline void threadgroup_change_end(struct task_struct *tsk)
2342 {
2343 	up_read(&tsk->signal->group_rwsem);
2344 }
2345 
2346 /**
2347  * threadgroup_lock - lock threadgroup
2348  * @tsk: member task of the threadgroup to lock
2349  *
2350  * Lock the threadgroup @tsk belongs to.  No new task is allowed to enter
2351  * and member tasks aren't allowed to exit (as indicated by PF_EXITING) or
2352  * change ->group_leader/pid.  This is useful for cases where the threadgroup
2353  * needs to stay stable across blockable operations.
2354  *
2355  * fork and exit paths explicitly call threadgroup_change_{begin|end}() for
2356  * synchronization.  While held, no new task will be added to threadgroup
2357  * and no existing live task will have its PF_EXITING set.
2358  *
2359  * de_thread() does threadgroup_change_{begin|end}() when a non-leader
2360  * sub-thread becomes a new leader.
2361  */
2362 static inline void threadgroup_lock(struct task_struct *tsk)
2363 {
2364 	down_write(&tsk->signal->group_rwsem);
2365 }
2366 
2367 /**
2368  * threadgroup_unlock - unlock threadgroup
2369  * @tsk: member task of the threadgroup to unlock
2370  *
2371  * Reverse threadgroup_lock().
2372  */
2373 static inline void threadgroup_unlock(struct task_struct *tsk)
2374 {
2375 	up_write(&tsk->signal->group_rwsem);
2376 }
2377 #else
2378 static inline void threadgroup_change_begin(struct task_struct *tsk) {}
2379 static inline void threadgroup_change_end(struct task_struct *tsk) {}
2380 static inline void threadgroup_lock(struct task_struct *tsk) {}
2381 static inline void threadgroup_unlock(struct task_struct *tsk) {}
2382 #endif
2383 
2384 #ifndef __HAVE_THREAD_FUNCTIONS
2385 
2386 #define task_thread_info(task)	((struct thread_info *)(task)->stack)
2387 #define task_stack_page(task)	((task)->stack)
2388 
2389 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2390 {
2391 	*task_thread_info(p) = *task_thread_info(org);
2392 	task_thread_info(p)->task = p;
2393 }
2394 
2395 static inline unsigned long *end_of_stack(struct task_struct *p)
2396 {
2397 	return (unsigned long *)(task_thread_info(p) + 1);
2398 }
2399 
2400 #endif
2401 
2402 static inline int object_is_on_stack(void *obj)
2403 {
2404 	void *stack = task_stack_page(current);
2405 
2406 	return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2407 }
2408 
2409 extern void thread_info_cache_init(void);
2410 
2411 #ifdef CONFIG_DEBUG_STACK_USAGE
2412 static inline unsigned long stack_not_used(struct task_struct *p)
2413 {
2414 	unsigned long *n = end_of_stack(p);
2415 
2416 	do { 	/* Skip over canary */
2417 		n++;
2418 	} while (!*n);
2419 
2420 	return (unsigned long)n - (unsigned long)end_of_stack(p);
2421 }
2422 #endif
2423 
2424 /* set thread flags in other task's structures
2425  * - see asm/thread_info.h for TIF_xxxx flags available
2426  */
2427 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2428 {
2429 	set_ti_thread_flag(task_thread_info(tsk), flag);
2430 }
2431 
2432 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2433 {
2434 	clear_ti_thread_flag(task_thread_info(tsk), flag);
2435 }
2436 
2437 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2438 {
2439 	return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2440 }
2441 
2442 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2443 {
2444 	return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2445 }
2446 
2447 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2448 {
2449 	return test_ti_thread_flag(task_thread_info(tsk), flag);
2450 }
2451 
2452 static inline void set_tsk_need_resched(struct task_struct *tsk)
2453 {
2454 	set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2455 }
2456 
2457 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2458 {
2459 	clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2460 }
2461 
2462 static inline int test_tsk_need_resched(struct task_struct *tsk)
2463 {
2464 	return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2465 }
2466 
2467 static inline int restart_syscall(void)
2468 {
2469 	set_tsk_thread_flag(current, TIF_SIGPENDING);
2470 	return -ERESTARTNOINTR;
2471 }
2472 
2473 static inline int signal_pending(struct task_struct *p)
2474 {
2475 	return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2476 }
2477 
2478 static inline int __fatal_signal_pending(struct task_struct *p)
2479 {
2480 	return unlikely(sigismember(&p->pending.signal, SIGKILL));
2481 }
2482 
2483 static inline int fatal_signal_pending(struct task_struct *p)
2484 {
2485 	return signal_pending(p) && __fatal_signal_pending(p);
2486 }
2487 
2488 static inline int signal_pending_state(long state, struct task_struct *p)
2489 {
2490 	if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2491 		return 0;
2492 	if (!signal_pending(p))
2493 		return 0;
2494 
2495 	return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2496 }
2497 
2498 /*
2499  * cond_resched() and cond_resched_lock(): latency reduction via
2500  * explicit rescheduling in places that are safe. The return
2501  * value indicates whether a reschedule was done in fact.
2502  * cond_resched_lock() will drop the spinlock before scheduling,
2503  * cond_resched_softirq() will enable bhs before scheduling.
2504  */
2505 extern int _cond_resched(void);
2506 
2507 #define cond_resched() ({			\
2508 	__might_sleep(__FILE__, __LINE__, 0);	\
2509 	_cond_resched();			\
2510 })
2511 
2512 extern int __cond_resched_lock(spinlock_t *lock);
2513 
2514 #ifdef CONFIG_PREEMPT_COUNT
2515 #define PREEMPT_LOCK_OFFSET	PREEMPT_OFFSET
2516 #else
2517 #define PREEMPT_LOCK_OFFSET	0
2518 #endif
2519 
2520 #define cond_resched_lock(lock) ({				\
2521 	__might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);	\
2522 	__cond_resched_lock(lock);				\
2523 })
2524 
2525 extern int __cond_resched_softirq(void);
2526 
2527 #define cond_resched_softirq() ({					\
2528 	__might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET);	\
2529 	__cond_resched_softirq();					\
2530 })
2531 
2532 static inline void cond_resched_rcu(void)
2533 {
2534 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
2535 	rcu_read_unlock();
2536 	cond_resched();
2537 	rcu_read_lock();
2538 #endif
2539 }
2540 
2541 /*
2542  * Does a critical section need to be broken due to another
2543  * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2544  * but a general need for low latency)
2545  */
2546 static inline int spin_needbreak(spinlock_t *lock)
2547 {
2548 #ifdef CONFIG_PREEMPT
2549 	return spin_is_contended(lock);
2550 #else
2551 	return 0;
2552 #endif
2553 }
2554 
2555 /*
2556  * Idle thread specific functions to determine the need_resched
2557  * polling state. We have two versions, one based on TS_POLLING in
2558  * thread_info.status and one based on TIF_POLLING_NRFLAG in
2559  * thread_info.flags
2560  */
2561 #ifdef TS_POLLING
2562 static inline int tsk_is_polling(struct task_struct *p)
2563 {
2564 	return task_thread_info(p)->status & TS_POLLING;
2565 }
2566 static inline void __current_set_polling(void)
2567 {
2568 	current_thread_info()->status |= TS_POLLING;
2569 }
2570 
2571 static inline bool __must_check current_set_polling_and_test(void)
2572 {
2573 	__current_set_polling();
2574 
2575 	/*
2576 	 * Polling state must be visible before we test NEED_RESCHED,
2577 	 * paired by resched_task()
2578 	 */
2579 	smp_mb();
2580 
2581 	return unlikely(tif_need_resched());
2582 }
2583 
2584 static inline void __current_clr_polling(void)
2585 {
2586 	current_thread_info()->status &= ~TS_POLLING;
2587 }
2588 
2589 static inline bool __must_check current_clr_polling_and_test(void)
2590 {
2591 	__current_clr_polling();
2592 
2593 	/*
2594 	 * Polling state must be visible before we test NEED_RESCHED,
2595 	 * paired by resched_task()
2596 	 */
2597 	smp_mb();
2598 
2599 	return unlikely(tif_need_resched());
2600 }
2601 #elif defined(TIF_POLLING_NRFLAG)
2602 static inline int tsk_is_polling(struct task_struct *p)
2603 {
2604 	return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG);
2605 }
2606 
2607 static inline void __current_set_polling(void)
2608 {
2609 	set_thread_flag(TIF_POLLING_NRFLAG);
2610 }
2611 
2612 static inline bool __must_check current_set_polling_and_test(void)
2613 {
2614 	__current_set_polling();
2615 
2616 	/*
2617 	 * Polling state must be visible before we test NEED_RESCHED,
2618 	 * paired by resched_task()
2619 	 *
2620 	 * XXX: assumes set/clear bit are identical barrier wise.
2621 	 */
2622 	smp_mb__after_clear_bit();
2623 
2624 	return unlikely(tif_need_resched());
2625 }
2626 
2627 static inline void __current_clr_polling(void)
2628 {
2629 	clear_thread_flag(TIF_POLLING_NRFLAG);
2630 }
2631 
2632 static inline bool __must_check current_clr_polling_and_test(void)
2633 {
2634 	__current_clr_polling();
2635 
2636 	/*
2637 	 * Polling state must be visible before we test NEED_RESCHED,
2638 	 * paired by resched_task()
2639 	 */
2640 	smp_mb__after_clear_bit();
2641 
2642 	return unlikely(tif_need_resched());
2643 }
2644 
2645 #else
2646 static inline int tsk_is_polling(struct task_struct *p) { return 0; }
2647 static inline void __current_set_polling(void) { }
2648 static inline void __current_clr_polling(void) { }
2649 
2650 static inline bool __must_check current_set_polling_and_test(void)
2651 {
2652 	return unlikely(tif_need_resched());
2653 }
2654 static inline bool __must_check current_clr_polling_and_test(void)
2655 {
2656 	return unlikely(tif_need_resched());
2657 }
2658 #endif
2659 
2660 static __always_inline bool need_resched(void)
2661 {
2662 	return unlikely(tif_need_resched());
2663 }
2664 
2665 /*
2666  * Thread group CPU time accounting.
2667  */
2668 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2669 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2670 
2671 static inline void thread_group_cputime_init(struct signal_struct *sig)
2672 {
2673 	raw_spin_lock_init(&sig->cputimer.lock);
2674 }
2675 
2676 /*
2677  * Reevaluate whether the task has signals pending delivery.
2678  * Wake the task if so.
2679  * This is required every time the blocked sigset_t changes.
2680  * callers must hold sighand->siglock.
2681  */
2682 extern void recalc_sigpending_and_wake(struct task_struct *t);
2683 extern void recalc_sigpending(void);
2684 
2685 extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
2686 
2687 static inline void signal_wake_up(struct task_struct *t, bool resume)
2688 {
2689 	signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
2690 }
2691 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
2692 {
2693 	signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
2694 }
2695 
2696 /*
2697  * Wrappers for p->thread_info->cpu access. No-op on UP.
2698  */
2699 #ifdef CONFIG_SMP
2700 
2701 static inline unsigned int task_cpu(const struct task_struct *p)
2702 {
2703 	return task_thread_info(p)->cpu;
2704 }
2705 
2706 static inline int task_node(const struct task_struct *p)
2707 {
2708 	return cpu_to_node(task_cpu(p));
2709 }
2710 
2711 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2712 
2713 #else
2714 
2715 static inline unsigned int task_cpu(const struct task_struct *p)
2716 {
2717 	return 0;
2718 }
2719 
2720 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2721 {
2722 }
2723 
2724 #endif /* CONFIG_SMP */
2725 
2726 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2727 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2728 
2729 #ifdef CONFIG_CGROUP_SCHED
2730 extern struct task_group root_task_group;
2731 #endif /* CONFIG_CGROUP_SCHED */
2732 
2733 extern int task_can_switch_user(struct user_struct *up,
2734 					struct task_struct *tsk);
2735 
2736 #ifdef CONFIG_TASK_XACCT
2737 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2738 {
2739 	tsk->ioac.rchar += amt;
2740 }
2741 
2742 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2743 {
2744 	tsk->ioac.wchar += amt;
2745 }
2746 
2747 static inline void inc_syscr(struct task_struct *tsk)
2748 {
2749 	tsk->ioac.syscr++;
2750 }
2751 
2752 static inline void inc_syscw(struct task_struct *tsk)
2753 {
2754 	tsk->ioac.syscw++;
2755 }
2756 #else
2757 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2758 {
2759 }
2760 
2761 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2762 {
2763 }
2764 
2765 static inline void inc_syscr(struct task_struct *tsk)
2766 {
2767 }
2768 
2769 static inline void inc_syscw(struct task_struct *tsk)
2770 {
2771 }
2772 #endif
2773 
2774 #ifndef TASK_SIZE_OF
2775 #define TASK_SIZE_OF(tsk)	TASK_SIZE
2776 #endif
2777 
2778 #ifdef CONFIG_MM_OWNER
2779 extern void mm_update_next_owner(struct mm_struct *mm);
2780 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2781 #else
2782 static inline void mm_update_next_owner(struct mm_struct *mm)
2783 {
2784 }
2785 
2786 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2787 {
2788 }
2789 #endif /* CONFIG_MM_OWNER */
2790 
2791 static inline unsigned long task_rlimit(const struct task_struct *tsk,
2792 		unsigned int limit)
2793 {
2794 	return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur);
2795 }
2796 
2797 static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
2798 		unsigned int limit)
2799 {
2800 	return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max);
2801 }
2802 
2803 static inline unsigned long rlimit(unsigned int limit)
2804 {
2805 	return task_rlimit(current, limit);
2806 }
2807 
2808 static inline unsigned long rlimit_max(unsigned int limit)
2809 {
2810 	return task_rlimit_max(current, limit);
2811 }
2812 
2813 #endif



Diese Seite steht unter der Creative Commons Namensnennung 3.0 Unported Lizenz http://i.creativecommons.org/l/by/3.0/80x15.png